

Links and Explanations

Where networks meet

Notice of Liability

Despite careful checking of content, we accept no liability for the content of external links. Content on linked sites is exclusively the responsibility of the respective website operator.

Links visited during the webinar

- → Definition of terms (all from <u>RFC4271</u>):
 - Next Hop is defined in Section 5.1.3
 - AS Path is defined in Section 5.1.2
 - Local Preference: Section <u>5.1.5</u>
 - Origin: Section 5.1.1
 - Multi Exit Discriminator (MED): Section 5.1.4
- → Best Path Selection process: Section 9.1
- → BGP Route Selection Algorithm by vendor:
 - Cisco
 - Juniper
 - Mikrotik
 - Nokia
 - BIRD
 - Quagga

Links and Explanations

Where networks meet

BGP Routing Algorithm

Bolded items were covered in this webinar.

1	NextHop reachable?	Continue if "yes"
2	Local Preference	higher wins
3	AS Path	shorter wins
4	Origin Type	IGP over EGP over Incomplete
5	MED	lower wins
6	eBGP, iBGP	eBGP wins
7	Exit	nearest wins
8	Age of route	older wins
9	Router ID	lower wins
10	Neighbor IP	lower wins

Local Preference is...

- → a 32bit integer value (0-4294967295)
- → Propagated via iBGP inside an Autonomous System
- → Usually set using rules when receiving prefixes
 - According to your routing policy
- → Typical values
 - 10000 (high value) for customer prefixes
 - 1000 (medium value) for prefixes received via peering
 - 100 (low value) for prefixes received via upstream
- → Rules to adjust local preference can be as complex as your router software allows it to be.

AS Path is...

- → an ordered list of AS numbers...
- → ...with the originator AS at the rightmost side
- → automatically built when prefixes are sent via eBGP
- → length of the path is used for selection (shorter wins)

Links and Explanations

Where networks meet

Origin Type is...

- → a historic, but mandatory attribute
- → set by originator AS and forwarded unchanged
- → can have the values (in order of preference):
 - IGP prefix was originated via a network statement
 - EGP prefix was learned from Exterior Gateway Protocol (RFC904, historic)
 - · incomplete prefix was learned by another protocol

Multi Exit Discriminator (MED) is...

- → a 32Bit value, lower wins
- → optional, if it is not there it's either treated as zero (best) or as 2^32-1 (worst)
- → non-transitive (set by an eBGP speaker and only sent to the next-hop AS)
- → usually set using rules when sending prefixes (according to the sender's routing policy)
- → only compared between eBGP speakers if next-hop AS is the same

Router ID is...

- → also called BGP Identifier
- → a 4 byte, unsigned integer (mostly it's the IPv4 loopback address of a router)
- → unique within one AS
- → set at startup and stays unchanged
- → the same for all BGP sessions

Neighbor IP is...

- ightarrow the last tie-breaker in the BGP Best Path Selection
- → the IP address of the eBGP speaker a prefix was learned from

Links and Examples

Where networks meet

Router Configs (Cisco IOS)

Example Network

Experiment 1: Set outgoing MED on R4 and R5

On R4:

```
conf t
route-map customer-out permit 100
set metric 0
end
clear ip bgp 64500 soft out
```

On R5:

```
conf t
route-map customer-out permit 100
set metric 1000
end
clear ip bgp 64500 soft out
```

Experiment 2: Age of route

- Set metric on R4 and R5 to the same value
- on R3 shut down interface Gig0/0 or Gig 3/0 and see how best prefix changes

Links and Examples

Where networks meet

AS64500 Router R1

```
hostname R1
interface Loopback0
ip address 192.168.1.1 255.255.255.255
interface GigabitEthernet0/0
ip address 192.168.2.2 255.255.255.252
description to R2
interface GigabitEthernet2/0
ip address 192.168.2.9 255.255.255.252
description to R3
router ospf 64500
redistribute connected subnets route-map internal-only
network 192.168.2.0 0.0.0.3 area 0
network 192.168.2.8 0.0.0.3 area 0
router bgp 64500
bgp log-neighbor-changes
neighbor internal peer-group
neighbor internal remote-as 64500
neighbor internal update-source Loopback0
neighbor internal next-hop-self
neighbor internal send-community both
neighbor 192.168.1.2 peer-group internal
neighbor 192.168.1.3 peer-group internal
ip prefix-list internal seq 5 permit 192.168.0.0/16 le 32
route-map internal-only permit 10
match ip address prefix-list internal
!
end
```


Links and Examples

Where networks meet

AS64500 Router R2

```
hostname R2
interface Loopback0
ip address 192.168.1.2 255.255.255.255
interface GigabitEthernet0/0
ip address 192.168.2.1 255.255.255.252
description to R1
interface GigabitEthernet1/0
ip address 192.168.2.5 255.255.252
description to R3
router ospf 64500
redistribute connected subnets route-map internal-only
network 192.168.2.0 0.0.0.3 area 0
network 192.168.2.4 0.0.0.3 area 0
router bgp 64500
bgp log-neighbor-changes
neighbor internal peer-group
neighbor internal remote-as 64500
neighbor internal update-source Loopback0
neighbor internal next-hop-self
neighbor internal send-community both
neighbor 192.168.1.1 peer-group internal
neighbor 192.168.1.3 peer-group internal
ip prefix-list internal seq 5 permit 192.168.0.0/16 le 32
route-map internal-only permit 10
match ip address prefix-list internal
end
```


Links and Examples

Where networks meet

AS64500 Router R3

```
hostname R3
interface Loopback0
ip address 192.168.1.3 255.255.255.255
interface GigabitEthernet0/0
description to AS64496 R5
ip address 172.16.1.2 255.255.255.252
interface GigabitEthernet1/0
description to R2
ip address 192.168.2.6 255.255.255.252
interface GigabitEthernet2/0
description to R1
ip address 192.168.2.10 255.255.255.252
interface GigabitEthernet3/0
description to AS64496 R4
ip address 172.16.1.10 255.255.255.252
router ospf 64500
redistribute connected subnets route-map internal-only
network 192.168.2.4 0.0.0.3 area 0
network 192.168.2.8 0.0.0.3 area 0
router bgp 64500
bgp log-neighbor-changes
neighbor internal peer-group
neighbor internal remote-as 64500
neighbor internal update-source Loopback0
neighbor internal next-hop-self
neighbor internal send-community both
```

```
neighbor upstream peer-group
 neighbor upstream send-community both
 neighbor upstream soft-reconfiguration inbound
 neighbor upstream route-map upstream-in in
 neighbor upstream route-map upstream-out out
 neighbor 172.16.1.1 remote-as 64496
 neighbor 172.16.1.1 peer-group upstream
 neighbor 172.16.1.9 remote-as 64496
 neighbor 172.16.1.9 peer-group upstream
 neighbor 192.168.1.1 peer-group internal
 neighbor 192.168.1.2 peer-group internal
ip prefix-list internal permit 192.168.0.0/16 le 32
route-map upstream-out permit 100
route-map upstream-in permit 100
 set local-preference 100
route-map internal-only permit 10
match ip address prefix-list internal
end
```


Links and Examples

Where networks meet

AS64496 Router R4

```
hostname R4
interface Loopback0
ip address 172.16.2.4 255.255.255.255
interface GigabitEthernet1/0
description to AS64500 R3
ip address 172.16.1.9 255.255.255.252
interface GigabitEthernet2/0
description to R5
ip address 172.16.1.13 255.255.255.252
router ospf 64496
redistribute connected subnets
network 172.16.1.12 0.0.0.3 area 0
router bgp 64496
network 172.16.0.0
neighbor internal peer-group
neighbor internal remote-as 64496
neighbor internal update-source Loopback0
neighbor internal next-hop-self
neighbor internal send-community both
neighbor customer peer-group
neighbor customer send-community both
neighbor customer soft-reconfiguration inbound
neighbor customer route-map customer-in in
neighbor customer route-map customer-out out
neighbor 172.16.1.10 remote-as 64500
neighbor 172.16.1.10 peer-group customer
neighbor 172.16.2.5 peer-group internal
ip route 172.16.0.0 255.255.0.0 Null0
route-map customer-in permit 100
set local-preference 10000
route-map customer-out permit 100
end
```


Links and Examples

Where networks meet

AS64496 Router R5

```
hostname R5
interface Loopback0
ip address 172.16.2.5 255.255.255.255
interface GigabitEthernet0/0
description to AS64500 R3
ip address 172.16.1.1 255.255.255.252
interface GigabitEthernet2/0
description to R5
ip address 172.16.1.14 255.255.255.252
router ospf 64496
redistribute connected subnets
network 172.16.1.12 0.0.0.3 area 0
router bgp 64496
network 172.16.0.0
neighbor internal peer-group
neighbor internal remote-as 64496
neighbor internal update-source Loopback0
neighbor internal next-hop-self
neighbor internal send-community both
neighbor customer peer-group
neighbor customer send-community both
neighbor customer soft-reconfiguration inbound
neighbor customer route-map customer-in in
neighbor customer route-map customer-out out
neighbor 172.16.1.2 remote-as 64500
neighbor 172.16.1.2 peer-group customer
neighbor 172.16.2.4 peer-group internal
ip route 172.16.0.0 255.255.0.0 Null0
route-map customer-in permit 100
set local-preference 10000
route-map customer-out permit 100
end
```