Notice of Liability
Despite careful checking of content, we accept no liability for the content of external links. Content on linked sites is exclusively the responsibility of the respective website operator.

BGP Configuration Examples
→ All examples are for Cisco IOS
→ Translation to other systems should not be too hard - ask your local network engineer

Network Diagram for all examples
Interface addresses

- A Loopback interface is needed (it never goes down)
- IP addresses of all interfaces have to be redistributed by a routing protocol
- In this example we are using OSPF for that
- Config shown is for R2, other routers are similar

```plaintext
! Config for R2
interface Loopback0
  ip address 192.168.1.2 255.255.255.255
!
interface GigabitEthernet1/0
  ip address 192.168.2.14 255.255.255.252
!
interface GigabitEthernet2/0
  ip address 192.168.2.1 255.255.255.252
!
router ospf 65501
  redistribute connected subnets tag 2
  network 192.168.2.0 0.0.0.255 area 0
```

iBGP

- A peer group is used for common config statements
- Best is to use an interface which cannot go "down" to tie iBGP on: Loopback0
- Then only one line of config is needed for each iBGP peer
- Remember: iBGP needs to be fully meshed.

```plaintext
! Config for R2
router bgp 65501
  neighbor internal peer-group
  neighbor internal remote-as 65501
  neighbor internal send-community both
  neighbor internal update-source Loopback0
  neighbor 192.168.1.1 peer-group internal
  neighbor 192.168.1.3 peer-group internal
  neighbor 192.168.1.4 peer-group internal
```
Adding routes to BGP

General

- Control what you announce❗
- Do not allow any prefixes uncontrolled into BGP‼
- You need to have the route in your routing table
- Easiest is a static route which will never go away - just route it to the Null0 interface
- You can do this on one or on all iBGP routers.

```
ip route 10.2.0.0 255.255.0.0 Null0
```

Using a "network" statement

- This tells BGP to announce this prefix **if it is in the routing table**

```
router bgp 65501
    network 10.2.0.0 mask 255.255.0.0
```

Using a "redistribute" statement

- Again, route needs to be in the routing table
- Also create an access list with all prefixes and matching netmask you want in BGP
- Use a route-map with the access list to filter

```
ip prefix-list customer-routes seq 5 permit 10.2.0.0/16
ip prefix-list customer-routes seq 99999 deny 0.0.0.0/0
!
route-map static-to-bgp permit 10
    match ip address prefix-list customer-routes
!
router bgp 65501
    redistribute static route-map static-to-bgp
```

eBGP

- Use peer groups whenever possible
 - Configure common statements inside the group config
 - Add individual information like AS number with the peer
- Use Route-Maps
Appendix - Router configurations

Find below initial router configurations for GNS3 network emulator

In this example, all routers are Cisco 72xx style routers with 1-3 (Gig)Ethernet interfaces. Only relevant parts of the configurations are listed.

Router R1

```bash
! hostname R1
ip bgp-community new-format
!
interface Loopback0
 ip address 192.168.1.1 255.255.255.255
!
interface GigabitEthernet1/0
 ip address 192.168.2.13 255.255.255.252
 negotiation auto
!
interface GigabitEthernet2/0
 ip address 192.168.2.9 255.255.255.252
 negotiation auto
!
router ospf 65501
 redistribute connected subnets tag 1
 network 192.168.2.0 0.0.0.255 area 0
!
router bgp 65501
 bgp log-neighbor-changes
 neighbor internal peer-group
 neighbor internal remote-as 65501
 neighbor internal send-community both
 neighbor internal update-source Loopback0
 neighbor 192.168.1.2 peer-group internal
 neighbor 192.168.1.3 peer-group internal
 neighbor 192.168.1.4 peer-group internal
!
end
```
Router R2 (this one will be changed)

!
hostname R2
!
interface GigabitEthernet0/0
 ip address 192.168.3.1 255.255.255.252
 negotiation auto
!
interface GigabitEthernet1/0
 ip address 192.168.2.14 255.255.255.252
 negotiation auto
!
interface GigabitEthernet2/0
 ip address 192.168.2.1 255.255.255.252
 negotiation auto
!
end

Router R3

!
hostname R3
!
interface Loopback0
 ip address 192.168.1.3 255.255.255.255
!
interface GigabitEthernet1/0
 ip address 192.168.2.14 255.255.255.252
 negotiation auto
!
interface GigabitEthernet2/0
 ip address 192.168.2.10 255.255.255.252
 negotiation auto
!
router ospf 65501
 redistribute connected subnets tag 3
 network 192.168.2.0 0.0.0.255 area 0
DE-CIX Academy: BGP Introduction

Links and Examples

! router bgp 65501
 bgp log-neighbor-changes
 neighbor internal peer-group
 neighbor internal remote-as 65501
 neighbor internal update-source Loopback0
 neighbor internal send-community both
 neighbor 192.168.1.1 peer-group internal
 neighbor 192.168.1.2 peer-group internal
 neighbor 192.168.1.4 peer-group internal
 ip bgp-community new-format
 end

Router R4

! hostname R4
!
interface Loopback0
 ip address 192.168.1.4 255.255.255.255
!
interface GigabitEthernet1/0
 ip address 192.168.2.6 255.255.255.252
 negotiation auto
!
interface GigabitEthernet2/0
 ip address 192.168.2.2 255.255.255.252
 negotiation auto
!
router ospf 65501
 redistribute connected subnets tag 4
 network 192.168.2.0 0.0.0.255 area 0
!
router bgp 65501
 bgp log-neighbor-changes
 neighbor internal peer-group
 neighbor internal remote-as 65501
 neighbor internal update-source Loopback0
 neighbor internal send-community both
neighbor 192.168.1.1 peer-group internal
neighbor 192.168.1.2 peer-group internal
neighbor 192.168.1.3 peer-group internal
!
ip bgp-community new-format
!
end

Router R5 (this one will be changed)
!
hostname R5
!
interface Loopback0
 ip address 172.16.1.1 255.255.255.255
!
interface GigabitEthernet0/0
 ip address 192.168.3.2 255.255.255.252
 negotiation auto
!
router bgp 65000
 no bgp enforce-first-as
 bgp log-neighbor-changes
 redistribute static route-map static-to-bgp
 neighbor upstream peer-group
 neighbor upstream send-community both
 neighbor upstream soft-reconfiguration inbound
 neighbor upstream route-map upstream-in in
 neighbor upstream route-map upstream-out out
 neighbor 192.168.3.1 remote-as 65501
 neighbor 192.168.3.1 peer-group upstream
!
ip bgp-community new-format
!
ip community-list expanded announce-to-upstream permit 65000:5(1|3|7).*
ip community-list expanded scrub-incoming permit 65000:.*
ip community-list expanded announce-to-peering permit 65000:5(2|3|7).*
!
ip route 172.16.0.0 255.255.0.0 Null0
!
!
ip prefix-list customer-routes seq 5 permit 172.16.0.0/16
ip prefix-list customer-routes seq 99999 deny 0.0.0.0/0
!
route-map upstream-in permit 10
 set comm-list scrub-incoming delete
!
route-map upstream-out permit 10
 match community announce-to-upstream
 set extcommunity rt 6695:4200000000 4200000000:6695
!
route-map static-to-bgp permit 10
 description customer routes
 match ip address prefix-list customer-routes
 set community 65000:53001
!
end