
IXP Scrubber: Learning from Blackholing Traffic
for ML-Driven DDoS Detection at Scale

Matthias Wichtlhuber
1
, Eric Strehle

2
, Daniel Kopp

1
, Lars Prepens

1
, Stefan Stegmueller

1

Alina Rubina
1
, Christoph Dietzel

1
, Oliver Hohlfeld

2

1
DE-CIX

2
Brandenburg University of Technology

ABSTRACT
Distributed Denial of Service (DDoS) attacks are among the most

critical cybersecurity threats, jeopardizing the stability of even the

largest networks and services. The existing range of mitigation

services predominantly filters at the edge of the Internet, thus creat-

ing unnecessary burden for network infrastructures. Consequently,

we present IXP Scrubber, a Machine Learning (ML) based system

for detecting and filtering DDoS traffic at the core of the Internet

at Internet Exchange Points (IXPs) which see large volumes and

varieties of DDoS. IXP Scrubber continuously learns DDoS traffic

properties from neighboring Autonomous Systems (ASes). It uti-

lizes BGP signals to drop traffic for certain routes (blackholing) to

sample DDoS and can thus learn new attack vectors without the

operator’s intervention and on unprecedented amounts of train-

ing data. We present three major contributions: i) a method to

semi-automatically generate arbitrarily large amounts of labeled

DDoS training data from IXPs’ sampled packet traces, ii) the novel,
controllable, locally explainable and highly precise two-step IXP

Scrubber ML model, and iii) an evaluation of the IXP Scrubber ML

model, including its temporal and geographical drift, based on data

from 5 IXPs covering a time span of up to two years.

CCS CONCEPTS
• Security and privacy → Denial-of-service attacks; • Net-
works→Wide area networks; Network monitoring; Public Inter-
net.

KEYWORDS
Machine Learning, Traffic Classification, Denial of Service

ACM Reference Format:
Matthias Wichtlhuber, Eric Strehle, Daniel Kopp, Lars Prepens, Stefan

Stegmueller, Alina Rubina, Christoph Dietzel, Oliver Hohlfeld. 2022. IXP

Scrubber: Learning from Blackholing Traffic for ML-Driven DDoS Detec-

tion at Scale. In ACM SIGCOMM 2022 Conference (SIGCOMM ’22), August
22–26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3544216.3544268

1 INTRODUCTION
With our societies increasingly relying on online services, cyberat-

tacks are becoming more frequent and devastating [17, 22, 43, 57].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00

https://doi.org/10.1145/3544216.3544268

C

A B

D

benignDDoS IXP

 please drop

ML DDoS
Classification

X

= DDoS

filter train

Figure 1: IXP Scrubber applies anMLDDoS classifier at IXPs
at the Internet’s core and filters DDoS traffic for connected
networks. It learns continuously from ASes (A-D) marking
unwanted traffic (blackholing).

One of the most prevalent threats to online services to date are

DDoS attacks [17, 35, 39, 46, 47, 52, 59]. DDoS attacks aim at con-

suming more critical resources than available to a service, e.g.,

network bandwidth, which makes protection against DDoS hard

for victims. They are frequent (e.g., thousands of attacks can be

observed at certain vantage points every single day [16, 37]), they

can be conducted without technical expertise [38], and can generate

attack volumes (e.g., of up to 3.5 Tbit/s observed in late 2021 [53])

that can threaten even the largest networks [15, 30, 53, 59]. The

motivation to conduct criminal activities are manifold and include

financial gain through ransom [21] or political motivation [42].

Current DDoS mitigation approaches detect and drop attack

traffic close to the edge—with the downside that attack traffic is

carried over the Internet before filtering. They can be roughly di-

vided into the two categories of filtering (1) inside or (2) outside a

victim’s network. The first category comprises solutions that are

directly employed on the victim’s side (e.g., mitigation appliances

or software stacks [6]). By locally monitoring and dropping incom-

ing traffic, they protect against DDoS attacks, but are limited to

the bandwidth that connects the victim’s network to the Internet.

The second category comprises external services, i.e., inspection

and dropping by external Traffic Scrubbing Services [44] (TSSes)

as offered by TSS providers and CDNs; this requires a rerouting

of traffic through the TSS/CDN infrastructure. In principle DDoS

attacks could overload the bandwidth available at the scrubber and

thus harm other customers. For both categories, DDoS traffic must

traverse the Internet from edge to edge to be filtered.

Contribution. Consequently, this paper proposes IXP Scrubber

(Figure 1). IXP Scrubber is a Machine Learning (ML) based sys-

tem designed for detecting and filtering DDoS traffic at the core of

https://doi.org/10.1145/3544216.3544268
https://doi.org/10.1145/3544216.3544268

the Internet at scale. It is suitable for large traffic hubs like Inter-

net Exchange Points (IXPs), transferring traffic of anywhere up to

thousands of Autonomous Systems (ASes). These traffic hubs see

large amounts and varieties of DDoS traffic on a daily basis [37].

IXP Scrubber is continuously self-learning based on neighboring

ASes’ input. It utilizes BGP signals to filter traffic on certain routes

(blackholing traffic [36]) to collect DDoS samples and learns their

properties. Thus, IXP Scrubber can learn about attack vectors with-

out intervention from operators and can do so on unprecedented

amounts of training data. At the same time, the IXP Scrubber ML

algorithm is designed to be controllable and locally explainable for

operators, which addresses a major issue for practical deployment.

In greater detail, our contributions are as follows.

• We design a method to semi-automatically generate arbi-

trarily large amounts of labeled DDoS training data from

IXPs’ sampled packet traces. It is based on blackholing an-

nouncements, indicating unwanted traffic. Blackholed traffic

contains both benign and malicious traffic and is unbalanced

relative to non-blackholed, thus not directly usable for ML

modeling. For the first time, we show that blackholing traffic

represents a rich dataset once balanced and filtered.

• We construct a two-step IXP Scrubber machine learning ap-

proach to identify DDoS attacks at the core. Our approach is

interpretable and controllable by network operators. More-

over, our approach abstracts local knowledge from the classi-

fier to enable model transfer among different vantage points.

• We evaluate IXP Scrubber at a previously unseen scale at

5 IXPs over three months to two years. We provide insights

on model drift, re-training frequencies, the transferability of

IXP Scrubber models between geographically diverse van-

tage points, and demonstrate how the IXP Scrubber can learn

new DDoS vectors without the IXP operators’ intervention.

Scope, ThreatModel, andData Limitations. IXP Scrubber learns
from sampled packet headers of blackholing traffic at IXPs and aims

at detecting any DDoS attack vectors that cause characteristic sig-

natures in terms of L2-4 headers appearing in blackholing data (i.e.,

attacks that were labeled by some networks as unwanted). As we

will show, this encompasses mainly reflection and amplification

attacks (see § 4.2). While other types of attacks (e.g., TCP middlebox

attacks [20], pulse wave attacks [40]) are likely detectable with our

approach, they are not in the scope of this work.

2 RELATEDWORK
A plethora of machine learning based methods for DDoS detection

and mitigation appeared in the last decade (see [16] for a compre-

hensive survey). We limit our review of the state-of-the-art to three

criteria: datasets, models/explainability, DDoS mitigation at the core.
Dataset size. Dataset properties impact the performance of ML-

algorithms. Recent works [25, 34, 58, 61] have mostly used artificial

and small-sized sets, e.g., the public datasets shown in Table 1. These

evaluation datasets are no longer than a few weeks, whereas our

datasets generated from IXPs’ blackholing traffic span up to two

years. Other works resort to artificially generated data [27, 49, 51],

either from simulating attacks or supersampling shorter existing

datasets [54, 60]. The availability of labeled DDoS datasets that are

of sufficient size still remains to be a challenge. In the absence of

Table 1: Related work dataset overview.

Dataset Year Size Time span Used in:

DARPA [3] 1998 – 9 weeks [31]

KDD99 [1] 1999 1.2 GB 9 weeks [61]

CAIDA [4] 2007 21 GB 1 hour [31]

ISCX2012 [8] 2012 84,42 GB 7 days [58]

CIC-DoS [2] 2017 4.6 GB 24 hours [26]

CICIDS2017 [50] 2017 51.1 GB 5 days [26, 31]

IDS2018 [7] 2018 502.1 GB 9 days [26]

Our aggregated 2019- 3 month up to 2 years of online

dataset 2021 analysis from 5 IXPs (see § 4.1)

a large enough public dataset, we base our work on longitudinal

data obtained from an online analysis at IXPs.

ML Models. A large set of off-the-shelf ML models were used to

detect DDoS (e.g., [25, 26, 31, 34, 58, 61]). [16] reviews > 120 such

models, including their classification performance and used datasets.

Related work shows a comparable classification performance to

ours (see § 6.1), but on less diverse and smaller datasets. We show

that the chosen model is less relevant than i) training data quality

and ii) the ML pipeline itself, consisting of data pre-processing,

clustering, and feature encoding. Showing a novel way to generate

training data and the pipeline is our main contribution.

Model Explainability. Operators are reluctant to deploy black-

box solutions that make decisions that cannot be explained. In [18],

a lack of interpretability of ML models for networking experts is

identified as an open problem (with DDoS as a use case). Explain-

able AI (XAI) aims at making ML systems more understandable

to humans [32, 48]—an open challenge in ML research—, starting

from global explainability (i.e., explaining the model) to local ex-

plainability (i.e., explaining model decisions for certain inputs).

This work aims at local explainability, a useful property for typical

troubleshooting processes at network providers (i.e., "debugging" a

model’s decision upon customer request).

DDoS mitigation at the Internet’s core. Recent works have

measured DDoS at large-scale infrastructures such as IXPs and

Internet Service Providers (ISPs) [19, 28, 37, 38, 45], in some cases

through the lens of blackholing traffic [19, 28] or high volume DDoS

events [38]. The authors of [19] investigate common blackholing

practices and quantify the filtering issues of blackholing at IXPs as

discussed in § 3. A recent work [37] proposed a heuristic to identify

high traffic rate DDoS attacks, which was later used [55] to study

the potential for joint DDoS filtering at IXPs. The latter work relies

on a simple traffic thresholding approach to identify volumetric

attacks, thus achieving high precision but low recall by ignoring

low-volume attacks. Our work is the first work providing a precise

and locally explainable ML-driven DDoS identification approach

that is directly applicable to IXPs. It is not based on heuristics or

limited to high volume attacks and aims to broadly classify DDoS.

3 BLACKHOLING: CROWDSOURCED DDOS
LABELING

We now describe how we obtain arbitrarily large amounts of train-

ing data from blackholing data—a data source that is noisy, unbal-

anced, and that has never been used this way.

Blackholing as a crowdsourced labeling source. Blackholing
is a standardized operational practice [36] enabling network opera-

tors to signal neighboring networks (routers) to drop traffic directed

Member
AS A

Member AS C

(not accepting

blackholing routes)

Member AS B

(accepting

blackholing routes)

Control plane, blackholing
route announcement via BGP

DDoS traffic

DDoS traffic marked for
dropping via BGP, but

traverses IXP unfiltered.

IXP

Figure 2: Blackholing is implemented between IXP mem-
bers, i.e., member networks are responsible for dropping
traffic. Members not accepting blackholing routes send un-
filtered traffic visible at the IXP.

to the announced IP prefix. Triggering a blackhole announcement

may happen i) manually in a router’s BGP configuration, or ii)
automatically by traffic analysis software or DDoS mitigation appli-

ances. Thus, blackholing is a strong and explicit signal by network

operators that enables the labeling of IP traffic as unwanted. Yet
blackholed IPs can also receive benign traffic [19, 29] and thus

blackholing does not lead to clean labels (i.e., blackholed traffic

is not entirely malicious). However, as we will show later on, the

vast majority of blackholing traffic is DDoS (§ 4.2) and is more

than suitable to identify hosts under attack, while our flow tagging

approach (§ 5.1) extracts DDoS traffic in blackholing traffic. Our

approach thus enables us to generate high-quality training data by

means of low-quality labels from blackholing announcements. We

thereby make blackholing announcements usable as a source for

collecting DDoS samples.

Capturing blackholing traffic at IXPs. Many IXPs (including

the largest ones, such as AMS-IX, DE-CIX, and LINX) offer black-

holing as a feature to members to remotely drop traffic. Commonly,

the mechanism is implemented between member network’s routers,

as shown in Figure 2, i.e., the IXP collects and distributes BGP

blackholing announcements among member networks (e.g. from

AS A). The blackholing announcement—indicated by carrying the

blackholing community attribute [36]—indicates that traffic to the

announced prefix should be dropped by other members (e.g. AS B).

Thus, for capturing blackholing traffic, we need to listen to BGP

for blackholing announcements and capture all traffic routed to the

blackholed prefixes. Whether any traffic can be captured depends

on how blackholing announcements are handled by the receiving

networks: IXP members may not adhere to the announcement and

forward traffic despite receiving a blackholing route announcement.

This is traffic that is i) unwanted by the receiver but ii) unfiltered
and, as we show in § 4.2, carries predominantly DDoS. Notably,

this only works at traffic hubs like IXPs where a larger number of

networks interact. Despite its limitations [19, 29], blackholing is

widely used; data from the DE-CIX looking glass shows an hourly

sampled average of 2580 blackholes in 2021 (min 1290, max 3620).

Generating Balanced Data. The vast majority of traffic at IXPs

is not blackholed. Figure 3a shows a CDF of the blackholing traffic

share over one week for all five studied IXPs (§ 4.1). The share of

blackholing traffic does not exceed 0.8% of any IXP’s total traffic.

In 90% of the minute bins, blackholing traffic is below 0.1% of the

total traffic. Using the data as is for ML-training leads to algorithms

favoring the dominant class (not blackholed) over the blackholing

class. For generating a useful dataset, both traffic classes need a

comparable share of data, i.e., they need to be balanced. This could

be achieved with ML techniques like stratified K-folding on the

whole dataset, which is offered by ML frameworks [12]. However,

the sheer amount of data (more than 50 TB of flow data) breaks

common toolchains. Thus, we need to vastly reduce data before

training and do so in a balanced way. In our case, this means: we

need to sample i) an equal number of destination IPs and ii) an
equal number of flows per destination IP for blackholing and benign

traffic to ensure a comparable number of data points in both classes.

Balancing procedure. For creating a balanced dataset with equal

distributions of blackholing flows (underrepresented) and benign

(overrepresented) flows, we use the balancing procedure shown in

Figure 3b. It selects traffic for the underrepresented traffic class first

(blackholing flows). We identify all traffic flows matching a BGP

blackholing announcement. We then sample an equal amount of

benign traffic that matches the number of target IPs and flows per

time bin (in our case, at one minute resolution). Since the benign

traffic is overrepresented compared to the blackholed traffic, we

need to employ a sampling approach that maintains the mentioned

traffic properties of the blackholed traffic. This gives us a balanced

dataset for training MLmodels with a roughly 50:50 share of benign

and blackholed traffic. We validate the balancing procedure in § 4.2.

Security considerations. For a discussion on possible attacks on

our labeling and learning approach, see Appendix E.

4 DATASETS FROM FIVE IXPS
Next, we present the datasets processed for this work. In particular,

we used two types of datasets: i) theML training set predominantly

used for training of ML models, and ii) the self-attack set predomi-

nantly used for validation.

4.1 Dataset Overview
ML training set.We partnered with five IXPs providing sampled

flow and BGP blackholing data. The IXPs are located in central

Europe (IXP-CE1, IXP-CE2), southern Europe (IXP-SE), the east

coast (IXP-US1) and in the south (IXP-US2) of the United States. We

processed 3 months’ of sampled flow data (23/07/2021 to 23/10/2021)

for all IXPs except IXP-SE (24 months; 23/10/2019 to 23/10/2021).

The IXPs show a large variance in terms of connected ASes

and traffic peak. We show the network- and traffic-level details of

each IXP in Table 2. The span of ASes and peak traffic shows that

the data represents a broad spectrum of very small to very large

IXPs from Europe and the USA. We thus argue that our dataset

is representative for the typical IXPs found in practice. The data

reduction induced by balancing (rightmost column) is at least 99.6%

with > 225 million flow records remaining. All IXPs are operated by

the same entity and use the same generic blackholing service that

this entity offers to the members of the IXPs. Thus, any differences

observed between the different IXPs’ datasets are due to differences

in the traffic and not due to artifacts of data collection (e.g., different

management policies or operational procedures).

Self-attack set (SAS). To validate our approach, we obtain a sec-

ond dataset of labeled ground truth attack data. One IXP provided

us with flow data of self-initiated, controlled DDoS attacks. It was

(a) Share of blackholing traffic com-
pared to overall traffic.

Blackholing
traffic

Benign

traffic

Sample
comparable #IPs
and #flows per

bucket

Allowed error
bounds +-10%

~50%
flows

~50%
flows

+ Balanced
training set

Matching blackholing

announcement

N
o

bl
ac

kh
ol

in
g

an
no

un
ce

m
en

t

Traffic flow
data 1 minute

buckets

(b) Procedure for balancing benign and blackholing
data to obtain a balanced training set. (c) Flows per unique IP blackholing vs.

flows per unique IP benign.

Figure 3: Basic properties of raw data, balancing procedure, balancedness of training set.
Table 2: Dataset overview (*=sum recorded online, unbalanced part of data was discarded early).

IXP properties Before balancing After balancing

#connected Traffic Raw flow #Flow #Flow Blackhole flow Flows balanced/

ASes peak [Tbps] data [TB] records records share [%] flows unbalanced [%]

IXP-CE1 >800 >10.00 50.04* 685 B* 202 M 52.61 0.0294

IXP-US1 >250 >1.00 4.48* 61 B* 16 M 51.68 0.0264

IXP-SE 209 0.69 1.56* 21 B* 7 M 55.38 0.0304

IXP-US2 103 0.53 1.31* 18 B* 90 k 48.86 0.0005

IXP-CE2 211 0.12 0.22* 3 B* 9 k 48.05 0.0003

SAS (self-att. set) - - - 338 k 702 k 48.16 -

captured over 9 days in spring 2021 at IXP-CE1 with a setup de-

signed for DDoS monitoring for the local authorities. During the

self-attacks, a total of around 5 TB raw data was transmitted, result-

ing in about 338K sampled flows. We balanced the SAS similar to

the remaining datasets with benign data from the same time frame,

which doubles the records after balancing in Table 2.

The SAS is close to what can be expected in a live setting and

collected using a different method than sampling from blackholing

data. Thus, the SAS is useful to reduce the potential for bias. In
particular, this covers i) sampling bias in the training data intro-

duced by the sampling method (i.e., hidden correlations with the

blackholing label [41]) and ii) inductive bias (i.e., underspecified
models [24]). Both types of bias are expected to lead to a noticeable

loss of classification performance when training ML algorithms on

the ML set and cross validating them on the SAS set; this is not the

case, we demonstrate a comparable performance in § 6.1.

4.2 Dataset Validation
Quality of balancing inML training set.We begin by validating

our balancing approach that ensures an equal share of benign and

blackholed traffic. The number of flows in the benign and blackhol-

ing class for all IXPs and the self-attack dataset is shown in Table 2.

The number of flows is balanced in all datasets at around 50% with a

maximum deviation of 5% for IXP-SE. We further show the number

of flows per unique IP per bucket for both traffic classes in Figure 3c.

As expected, both classes are clearly correlated (Pearson’s 𝑟 : 0.77 at

𝑝 < 0.01). This verifies our approach generates the balanced data

sets needed for training. A positive side effect of balancing is a data

reduction of at least 99.6% (see Table 2, rightmost column).

Service distribution. Figure 4a shows the share of well-known
DDoS ports across three classes: benign and blackholing data of the

ML training set (across all IXPs) and the SAS. Recall the SAS acts

as a baseline containing DDoS traffic only. While the benign class

contains ∼7.5% of traffic from well-known DDoS ports such as NTP,

SNMP, or LDAP, the blackhole class contains more than ∼87.5% of

traffic from well-known DDoS ports. The blackholing class and self-

attack class contain an order of magnitude more UDP fragments

than the benign class. The service distribution of the blackholing

class is close to the self-attack class, thus exhibiting a high share of

DDoS, but is not purely DDoS. This is expected, as blackholing is

an IP-based filter mechanism used to block entire destination IPs.

Attacked IPs typically receive both benign and attack traffic [29].

In case of an attack, benign and DDoS traffic is blackholed. Thus,

we introduce a pre-filtering step (§ 5.1) in our approach.

Packet size characteristics. Moreover, we validate our data by

comparing the packet sizes of well-known DDoS ports of the black-

holing and self-attack class (Figure 4b). Many DDoS vectors pro-

duce characteristic packet sizes (e.g., NTP DDoS commonly uses

500 bytes monlist replies [38]). We find similar packet sizes for all

DDoS vectors except WS-Discovery, which is hardly present in the

blackholing class. This strongly indicates that the bulk of the traffic

captured by blackholing is indeed DDoS traffic.

Takeaway. The balancing procedure creates a well-balanced dataset
and maintains privacy by reducing the raw data by more than 99.6%.
The validation of the data indicates that blackholing data is a useful
source of DDoS data samples. The characteristics are similar to the
baseline self-attack data. Nevertheless, blackholing data contains up
to 12.5% of possibly benign data, which has to be considered for ML.

(a) Share of well-known DDoS ports (other DDoS: Ubiq. SD, rpcbind
(UDP/TCP), MSSQL, DNS (TCP), chargen, DHCPDisc., GRE, mem-
cached, WCCP, NetBios, RIP, OpenVPN, TFTP, Micr. TS).

(b) Comparison of packet size characteristics of well-known DDoS
ports blackholing vs self-attack data.

Figure 4: Dataset validation.

4.3 Ethical Considerations
We carefully take a number of steps to ensure all data processed

was recorded and is used in compliance with ethical standards.

Traffic data for ML-training set. The data in the ML training set

was recorded online, i.e., flow records not chosen by the balancing
procedure were discarded after balancing, thus immediately reducing
the recorded data by more than 99.6%.Moreover, the data is sampled,

aggregated on a flow-level and does not contain payload informa-

tion. Capturing the data is compliant with the local legal regulations.

We immediately obfuscate sensitive data, i.e., IP addresses and MAC

addresses are hashed with a secret salt before storage and analysis.

Traffic data for self-attack set. To obtain the ground truth traffic

data containing DDoS attacks for validation, one IXP provided us

with traffic data from previous self-attacks using DDoS-for-hire

services. The experimental setup to obtain this data was designed

in collaboration with a government agency. Contracting a DDoS-

for-hire service is a sensitive matter. Thus, the data was obtained

by purchasing the smallest service package (15$), which also limits

possible side effects (volume <7 Gbps, duration <5 minutes).

The resulting attack data is not privacy-critical. The attacked

systems were hosted by the IXP within a dedicated AS and IP space,

the attacking systems can be found by scanning the IP space (e.g.,

DNS servers) and are contained in public datasets (e.g., Censys,

Rapid 7). The experiments were tightly controlled to immediately

stop them in case IXP members experience side effects, i.e., by

immediately withdrawing the dedicated IP space. There were no

complaints by IXP members during the experiments.

5 ML-DESIGN OF THE IXP SCRUBBER
The goal of the IXP Scrubber is to identify DDoS attacks at IXPs

using flow-level traffic data. To tackle this challenge, IXP Scrubber

uses a two-step ML approach shown in Figure 5. As a result, IXP

forwarding
hardware

sampled

flow data tagging

aggregation

 per

target IP

aggregated

flows

filtering

decision

tags as
ACLs

2

tagged

flow data

1

learn

learn

training set

ML models

rule mining model

macroscopic level (§5.2)

microscopic level (§5.1)

predict

predict

Figure 5: Overview of the machine learning model.

Scrubber generates filters (ACLs) to classify DDoS traffic, which

can be used for dropping, shaping, monitoring or re-routing.

Step 1 introduces rule tagging to tag individual flows as benign

or malicious (microscopic level). We automatically generate a few

promising rule tags out of large volumes of balanced training data.

These rule tags are comparable to firewall rules and are easily in-

terpretable by network operators. Operators can validate them in a

web interface supporting the selection process, as shown in Figure 6.

This way, domain knowledge of network operators is included in

the model, as they can review and manually enable/disable each

filtering rule—a practical and feasible approach given our minimiza-

tion approach that generates minimal filtering rule sets. As we will

show, in addition to being inherently interpretable and controllable,

this approach also achieves high accuracy.

Step 2 aggregates information from individual flows to a per-target

IP perspective (macroscopic level). To do so, we first derive features

for learning from the flow headers in an aggregation step. After-

wards, we apply five common ML models to the derived features.

These models are less intuitive to understand than the tagging

rules, depending on the algorithm (see challenges in XAI, § 2). Yet

local explainability methods can be applied to these models because

the use of Weight of Evidence encoding (introduced in § 5.2) and

tagging rules preserve the meaning carried by the models’ features.

5.1 Step 1: Rule Tagging
The goal of the rule tagging step is to automatically compile a

small list of tagging rules, which are interpretable for humans, that

tag each flow as benign or malicious. The rule tags are preserved

through the aggregation step for two reasons: i) they represent

filter definitions that can be applied directly to the hardware as

an Access Control List (ACL) filtering rule later on, and ii) they
are helpful to explain the per-target IP classification in Step 2 by

explaining problematic header combinations in the traffic. Each

rule can be reviewed and manually enabled/disabled by network

operators, thereby making this step fully interpretable and con-

trollable. Moreover, by repeatedly applying this step over time to

new data, a growing set of rule tags can be accumulated. With our

rule minimization approach, we ensure that the list can be curated

manually in a reasonable time frame.

5.1.1 Association Rule Mining. For generating tagging rule can-

didates, we use association rule mining (ARM) [14], which is a

well-known data mining technique originating from ecommerce

recommender systems (e.g., ’customers buying milk also buy eggs’).

ARM can learn association rules on structured data in the form of

𝐴→ 𝐶 , where 𝐴 is a set of items called the antecedent and 𝐶 is a

Figure 6: User interface used by network operators to validate tagging rules mined in step 1.

Algorithm 1 minimize association rules

1: function MinimizeAssociationRules(𝐿𝑐 , 𝐿𝑠 ,

𝑅 = [(𝐴0, 𝑐0, 𝑠0), (𝐴1, 𝑐1, 𝑠1), . . . , (𝐴𝑛, 𝑐𝑛, 𝑠𝑛)])
2: while true do
3: 𝐷 ← ∅ ⊲ rule indices to delete

4: for 𝑖 = 0 to 𝑛 do ⊲ pair-wise iteration of rules in 𝑅

5: for 𝑗 = 0 to 𝑛 do
6: if 𝑖 ≠ 𝑗 then
7: if 𝐴𝑖 ⊂ 𝐴𝑗 then ⊲ rule i’s antecedent is in j’s

8: if (𝑐𝑖 − 𝑐 𝑗 < 𝐿𝑐) ∧ (𝑠𝑖 − 𝑠 𝑗 < 𝐿𝑠) then
9: 𝐷 ← {𝑖 } ⊲ remove i; limited loss in conf./supp.

10: if |𝐷 | = 0 then
11: break ⊲ no more dispensable rules in R

12: for 𝑘 = 0 to 𝑛 do ⊲ remove rules from 𝑅

13: if 𝑘 ∈ 𝐷 then
14: 𝑅 ← 𝑅 − {𝑅 [𝑘] }

return 𝑅

set of items called the consequent. We apply it to our dataset to

mine for packet headers as antecedents, which often occur with

the {blackhole} consequent. For example, IXP members receiving

NTP traffic and blackholing this traffic generate an association rule

{protocol = UDP, port src = 123} → {blackhole}.
Performance metrics. ARM provides comprehensible metrics to

assess the relevance of an association rule: antecedent support 𝑠

and confidence 𝑐; 𝑠 represents the share of the antecedent in the

whole dataset, i.e., the overall relevance of the respective header

combination; 𝑐 represents the share of cases where the antecedent

co-occurred with the consequent, i.e., if a header combination co-

occurs with blackhole in 90% of the cases the confidence is 0.9.

Rule set minimization. A direct application of rule mining can

easily result in a filtering rule set that is too large to comprehend.

To illustrate this, we apply the FP-Growth [33] association rule

learning algorithm with a minimum required confidence of 0.8 to

our data and obtain 7,859 rules—too large to be curated manually.

For ruleminimization, we design a two-stepmethod: i)we first re-
move all association rules where the consequent is not {blackhole}.
This removes 6,565 association rules, leaving us with 1,469 remain-

ing rules. Based on the reduced rule set, we ii) further minimize

the association rules using Algorithm 1, reducing the rule set to a

manageable size of 367 rules.

Algorithm 1 utilizes the situation that antecedents of two associa-

tion rules can be a proper subset of each other if they have the same

consequent (recall in our case all consequents are {blackhole}). If
this is the case, the antecedent with more elements has a likely

lower or equal confidence 𝑐 and support 𝑠 , as it is more specific. Al-

gorithm 1 runs on a list of all antecedents (𝐴0..𝑛), their confidences

(𝑐0..𝑛), and support values (𝑠0..𝑛). It tests all antecedents for being

subsets of each other. If two antecedents are found to be subsets

of each other, the confidences/support values are compared to not

exceed a loss threshold 𝐿𝑐 /𝐿𝑠 . The process is repeated until no more

rules can be removed. Algorithm 1 has a complexity of O(|𝑅 |2)
with 𝑅 representing the number of rules to be minimized. However,

execution time never exceeded 60 seconds with the given data on

a standard consumer laptop. We set both 𝐿𝑐 /𝐿𝑠 to 0.01, based on a

parameter sensitivity analysis presented in Appendix A, Figure 15.

5.1.2 Interpretability. After minimizing the rule set, it is presented

to network operators in a user interface (UI) as shown in Figure 6.

The UI shows the header data, confidence and antecedent support.

Users can tag and order rules by arbitrary columns and classify each

rule as decline (will never show up again), staging (consider for later
acceptance), and accept to accept the rule in the association rule

set for further processing. For documentation, comments can be

added. Moreover, association rules can be exported and imported,

where they can be merged with freshly mined rules. This allows

a growing tagging rule set over time. Please note that for legal

reasons we cannot release raw datasets. However, we release the

tagged rules mined on our datasets under an open source license;

see Appendix F for details.

5.1.3 Interpretability Evaluation with Operators. Mined tagging

rules are interpretable by network operators and can be manually

verified quickly.We test these hypotheses in a small-scale subjective

study that involves i) two network operators at one IXP and ii) three
of the authors that did not design the rule mining approach. We

base this study on a rule set that we mined from the SAS. The rule

set presented to the subjects consists of 38 rules that need to be

accepted (drop traffic) or declined (pass traffic) by each subject. The

goal of the study is to evaluate i) the quality of the compiled rules

and ii) the time needed for classification. We evaluate the selection

quality by matching the rule set compiled by each subject to the

test data and compute i) the percentage of correctly dropped traffic

from the DDoS self-attacks and ii) the percentage of incorrectly
dropped traffic from the benign dataset.

The test subjects generated rule sets of high quality in a short

time, suggesting the approach to be applicable in network operation.

On average, the subjects correctly drop 76.73% of the ground truth

DDoS traffic, while only dropping 0.43% of the benign data. For

curating the 38 rules, they only needed 6.62 minutes on average.

While the study is small-scale, it has been conducted by domain

experts and shows the feasibility of our approach.

5.2 Step 2:Aggregation fromFlows to
Targets andClassification

In step 2, we aggregate from individual flows (microscopic perspec-

tive in step 1) to per-target IP profiles (macroscopic perspective).

Step 1 provides a classification of individual flows only, ignoring

any structural information in traffic aggregates beyond a single

flow. The macroscopic perspective uses supervised machine learn-

ing techniques to learn expected and anomalous traffic profiles per

target IP by aggregating flow-level features into a holistic picture.

Arrange sequentially
as record

blackholed benign
NoYes blackholed

flow

Rankings of

categoricals by metrics

bytessrc port
1.	

3.	

... ...

443

62605

21256

64
2.	 80 4562

 by by by ...

ba
la

nc
ed

 fl
ow

 d
at

as
et

1
m

in
ut

e
bu

ck
et

s

ta
rg

et
 IP

s

label

index data

Figure 7: All flow data per 1-minute bucket and target IP is
aggregated into rankings. The example shows source ports
ranked by bytes received from each port.

5.2.1 Feature Construction. To create profiles that infer whether a

target is under attack, we first need to derive meaningful features

that aggregate flow-level information by target IP. To do so, we

aggregate multiple flows into one record to summarize all traffic

sent to a target. We next describe our feature and label construction.

Binning and grouping. The aggregation process is depicted in

Figure 7. First, traffic flows of the balanced dataset are grouped.

Similar to the dataset balancing, flows are separated into time bins.

We use the same time bin resolution of one minute as in the balanc-

ing procedure. The flows in each time bin are grouped according

to the target IP address. Afterwards, all flows are grouped by time

range and target IP and are aggregated into a single dataset record.

Ranking categoricals. The categorical flow properties of a set

of flows 𝐶 = {source IPs, source port, destination port, source MAC
address, transport protocol} are ranked based on the non-categorical

flow metrics𝑀 = {mean packet size, sum of bytes, sum of packets}
with a resolution of 𝑟 = 5 ranks, e.g., the top 5 source ports by bytes

sent to the target (see Figure 7 for an example). This results in |𝑀 | ∗
|𝐶 | rankings with 2 ∗ 𝑟 columns each, as we store the categoricals

and the aggregated metric per ranking. In our case, the aggregation

generates 150 feature columns (excluding the <time bin, target IP>
index columns and the label column)while reducing theML training

dataset from all vantage points to 1.2 million records. Notably,

we ignore any features related to the network announcing the

blackhole (i.e., no target IPs or ASN/path information) to avoid bias

(i.e., learning who is blackholing traffic instead of traffic properties).

The waywe aggregate data by using ranks for the final classification

of attacked systems deliberately generates redundant/correlated

feature columns in the aggregated dataset to have a broad base of

features for feature selection. Appendix B shows the correlation

among columns in the aggregated data.

Labels. The last step generates the labels required for learning. If

we find at least one of the flows for a certain destination IP marked

as blackholed, the corresponding aggregated record is likewise

marked as a blackhole and thus DDoS.

Neural Network

Naive Bayes

Decision Tree

XGBoost

LSVC

I WoE C

I WoE N C

I WoE S PCA N C

FR

Figure 8: Overview of the machine learning model prepro-
cessing pipelines; FR=feature reduction, drops unnecessary
features identified upfront; I=imputer, replaces null values
with -1; WoE=weight of evidence encoding of all categor-
ical columns; S=standardize by mean and unit variance;
PCA=principal component analysis; N=normalizer, normal-
ize values to interval [0;1];C=classifier.

5.2.2 Machine Learning Classification. The goal of this step is to

classify traffic towards a target IP as malicious or benign by using a

supervised machine learning approach. This classification is based

on the feature set that aggregates individual flows to a macroscopic

per-target IP perspective. While only a single machine learning

model is required for this step, we implement and evaluate a broad

set of common classificationmodels to identify the one that achieves

the best classification performance and requires the least CPU

cycles for prediction. We follow a generic 3-step methodology to

implement and optimize all classifiers.

(1) Data preparation. We carefully review the assumptions re-

garding input data for each algorithm and implement a data

preprocessing pipeline that performs the required transfor-

mations on the data before classification. This can include

normalization, encoding of null values, and the like.

(2) Hyperparameter optimization. We carefully review hyperpa-

rameters available to tune the classification performance.

For each algorithm, we define a grid of hyperparameters.

The grid is tested for parameter combinations providing

the best performance on our overall dataset using a 3-fold

cross-validation.

(3) Feature elimination. Recall that the aggregation approach de-

liberately introduces correlated features to have a broad base

of features for feature selection (also discussed in Appen-

dix B). We reduce this excess dimensionality with common

techniques like recursive feature elimination or PCA.

Weight of evidence encoding. Beyond data normalization as

common feature pre-processing, a key step in our pipeline is to en-

code all categorical variables (IPs, transport ports, MAC addresses

of IXP members, etc.) asWeight of Evidence (WoE). The WoE con-

cept originates from the context of financial risk assessment [56].

The idea of WoE is to map each possible value 𝑥𝑖 of a categorical

feature to WoE(𝑥𝑖) = ln(𝑃 (𝑋=𝑥𝑖 |𝑦=1)
𝑃 (𝑋=𝑥𝑖 |𝑦=0)), where 𝑦 is the blackhole

label
1
. That is, 𝑥 variables (e.g., IPs) are transformed into bins of

similar WoE values based on the similarity of the distribution in

the blackhole labels. In the case of risk management, 𝑥𝑖 may be

the name of a debtor and 𝑦 whether the debtor defaulted or not. A

1
We handle the division-by-zero case by adding 1.0 to the numerator and the denomi-

nator. Unknown 𝑥𝑖 s are encoded as WoE(𝑥𝑖) = 0.0 during prediction, i.e., neutral.

attack traffic

rule tag Weight of Evidence

NTP amplification

Source Port: NTP

Protocol: UDP

Packet size: 400-500

0
1
2
3

-1
-2
-3

ip_src port_src port_dst

id
en

tif
ie

s
pr

ob
le

m
at

ic
he

ad
er

 c
lu

st
er

s

identifies problem
atic

features (e.g. sending
hosts, transport ports, ...)

microscopic

level (§5.1; rule

tagging)

macroscopic

level (§5.2;

aggregation)

false

negative

Figure 9: Weight of Evidence and rule tags can be used to
understand and debug misclassifications.

high number of defaults will lead to high WoE and vice versa. In

our case, the WoE allows mapping IPs, MACs and port numbers

to their WoE of appearing in the blackhole (or not in it). We then

input WoE(𝑥𝑖) to each ML classifier, instead of using 𝑥𝑖 directly.

Benefits of WoE encoding. Using WoE encodings has four ben-

efits. (1) As we will show in § 6.6, WoE is a useful tool to make

model behavior locally explainable. (2) In comparison to methods

like one-hot encoding which encodes each possible value of the

categorical into a separate binary feature column,WoE is very mem-

ory efficient, as it only requires storing the mapping of possible

categorical values to their WoE. (3) WoE encoding incorporates a

long-term memory on suspicious transport ports, reflector IPs or

DDoS prone IXP member ports without the need to have the classi-

fier looking at past records during classification, which would lead

to extended training times and more complicated ML architectures.

This is especially beneficial in our case, as WoE can leverage our

long-term data. (4) WoE encoding encapsulates local knowledge

independent of the model, e.g., a local, nearly disjoint set of DDoS

reflection hosts is learned at each IXP. As we will show in § 6.4,

this enables the exchange of trained models between IXPs.

Classifiers. We test five different classifiers: XGBoost (XGB) [23],

decision tree (DT), neural networks (NN), linear support vector

machine (LSVM), and multinomial/complement/gaussian/bernoulli

naive Bayes (NB-M/NB-C/NB-G/NB-B). All fitting of data (includ-

ing all preprocessing, esp. WoE encoding) is done with a disjoint

training and test set. This prevents data leakage distorting results.

The selection of algorithms and their respective data preprocessing

pipelines are shown in Figure 8, and the results of the hyperpara-

meter optimization and feature reduction are listed in Appendix C.

Please note that we classify attacked systems and apply tagging

rules as filters afterwards. It might be possible to use multiclass

classification to predict the tagging rules and use them as ACLs

directly instead. This would remove the need to apply rule tags to

flows for prediction, but might lead to a less interpretable model:

tagging rules are derived from the raw data, whereas predicted
tagging rules would be generated by the ML-model.

Baseline classifiers. In addition to the classifiers mentioned above,

we use two baseline classifiers for a comparison. One is a dummy

classifier (DC), which randomly guesses a label with equal prob-

ability, i.e., the worst conceivable classifier. The second baseline

classifier is the rule tagging-based classifier (RBC). The RBC per-

forms a prediction based on the rule tags discussed in Section 5.1.

If a destination IP has received a flow matching one of the mined

tagging rules, the RBC predicts it as DDoS, otherwise as benign

traffic. The RBC constitutes a baseline for the achievable classification
performance when relying on association rule mining only.

5.2.3 Local Explainability. Figure 9 shows an example of how mis-

classifications can be debugged independently of the actual classi-

fier by investigating rule tags and WoE encodings of the pipeline.

The example shows a false negative classification. The annotated

rule indicates an NTP amplification attack and most of the Weight

of Evidence encoded features also point to an attack, but the nega-

tive value of the IP source address causes the classifier to mislabel

the attack as benign traffic. A viable resolution for the operator

would be to blacklist the source IP, e.g., by artificially adding a high

WoE to the respective sending host.

6 IXP SCRUBBER EVALUATION
We have prototypically deployed IXP Scrubber at five commercial

IXPs to evaluate its prediction performance, temporal stability (how

often do models need to be trained?), geographic stability (can

models be trained at one IXP and used at other locations?), and local

explainability. In these deployments, we train all models with the

input data (§ 4.1) and then evaluate their actions—of course, without

actually dropping or filtering traffic or impacting IXP operation.

6.1 ML Model Classification Performance
We begin by evaluating the performance of all models. To do so,

we merge traces from all five IXPs and use 2/3 of the ML training

set for model training and 1/3 for evaluation.

Model performance. We report the performance for the classical

model performance indicators, i.e., true positives/true positive rate

(tp/tpr), true negatives/true negative rate (tn/tnr), false positives/

false positive rate (fp/fpr), and false negatives/false negative rate

(fn/fnr) in Table 3. It contains all models except NB-C, NB-M and

NB-B due to unacceptable performance (tnr below 0.90, see Appen-

dix D). We also show the harmonic mean of precision and recall

expressed as 𝐹1 score, where 𝐹1 = tp/(tp+ 1

2
(fp+fn)). Since false posi-

tive classifications (i.e., wrongly attributed attack traffic that would

be blocked) have a more severe negative impact on the model de-

ployment than undetected attacks (false negative), we additionally

show a weighted ratio 𝐹𝛽 , which we use in the remainder of this

work, expressed as 𝐹𝛽 =
(1+𝛽2) ·tp

(1+𝛽2) ·tp+𝛽2 ·fn+fp for 𝛽 = 0.5. Last, we

present a performance perspective measured in mega clock cycles

per prediction (mcc) that we obtain directly from the CPU during

prediction (averaged over 30 runs). Good model performance is

indicated by high F-scores and tnr/tpr values, low fnr/fpr values,

and a low mcc value.

We observe that high prediction performance at low false posi-

tive rates is possible with all tested ML models. While the choice

seems arbitrary, one should keep in mind that IXP Scrubber has to

classify large quantities of IPs per day at IXPs, thus even small rela-

tive differences in performance may cause large absolute numbers

in false positives/false negatives. The best performance is obtained

for the XGB model, which achieves the highest 𝐹𝛽=0.5 score and the

lowest false negative rate, the third lowest false positive rate and

the third lowest mcc when predicting. For any practical application,

the XGB model is thus the recommended model.

Table 3: Classification results (except the last column) are based on a random 2/3 train set 1/3 test set split on the ML training
set (all IXPs). The last column applies models learned on 2/3 of the ML training set (all IXPs) to the self-attack set (SAS).

𝐹𝛽=0.5 𝐹1 mcc tnr fnr tpr fpr UDP DNS NTP SNMP LDAP SSDP Apple 𝐹𝛽=0.5
Fragm. RD (all on SAS)

XGB 0.989 0.988 0.015 0.988 0.012 0.988 0.012 0.994 0.994 0.993 0.996 0.993 0.971 0.993 0.961

NN 0.985 0.976 0.043 0.990 0.039 0.961 0.010 0.994 0.993 0.990 0.996 0.991 0.959 0.991 0.631

LSVM 0.978 0.973 0.001 0.981 0.035 0.965 0.019 0.993 0.993 0.990 0.996 0.991 0.958 0.990 0.963
NB-G 0.978 0.959 0.022 0.991 0.071 0.929 0.009 0.993 0.993 0.990 0.996 0.991 0.959 0.991 0.425

DT 0.965 0.950 0.004 0.974 0.072 0.928 0.026 0.991 0.991 0.987 0.994 0.990 0.963 0.991 0.954

RBC - - - - - - - - - - - - - - 0.917
DUM 0.511 0.506 - 0.501 0.498 0.500 0.499 - - - - - - - 0.530

Figure 10: XGB features with highest avg. gain for all splits
(notation: categorical/metric/rank, see Figure 7).

Model performance per attack vector.Model performancemight

differ by attack vector (i.e., the used amplification protocol). To eval-

uate this aspect, we show the 𝐹𝛽=0.5 score for each model for the

top 7 attack vectors in our dataset in Table 3. Irrespective of the

attack vector, we do not observe noticeable performance differences

and all models perform equally well for all shown attack vectors.

We therefore do not further differentiate performance by vector.

Ground truth evaluation. In a second step, we evaluate the mod-

els trained onML training dataset on the self-attack set (SAS). Recall

the self-attack data only contains DDoS attacks, was recorded with

a different method and is close to production data; thus the set is

useful to reduce the possibility of bias when generalizing to a real-

world setting (see § 4.1). In case of bias, we expect a considerable loss

in classification performance. We show the model performance as

𝐹𝛽=0.5 score in Table 3 in the rightmost column. LSVM reaches the

highest 𝐹𝛽=0.5 score (0.963) with XGB being second (0.961) which

is comparable to the performance on the remaining data.

Moreover, only using the operator-driven rule mining approach

(RBC) already yields a high prediction performance — without

any further machine learning model applied. Here we observe an

𝐹𝛽 = 0.5 score of 0.917 with a tpr/tnr of 0.847/0.938 and fpr/fnr of

0.153/0.0616 (not shown in table); these results show that combining

an interpretable approach (rule mining) with a more precise but

less interpretable approach like XGB can benefit local explainability

efforts.We explore the overlap between the RBC and XGB in § 6.6. In

contrast to the dummy classifier that performs a coin toss for each

flow (and thus arrives at tnr=tpr=fpr=fnr=0.5), this is a substantial

classification performance that is only slightly improved by the

machine learning models in step 2. Note that we can only validate

RBC on the self-attack dataset, because the rules were mined on

the remaining data. Validating RBC on the same dataset would

introduce data leakage.

Takeaway. The evaluation of the performance of different models
shows that XGB achieves the best results for IXP Scrubber on the whole
ML training set as well as single attack vectors at reasonable cost for
prediction. XGB is thus the recommended model for any practical
application. Notably, the fully operator interpretable and controllable
rule mining approach performs remarkably well, reaching scores not
far below XGB. This shows the benefit of our design choice that com-
bines a sophisticated learning algorithm (XGB) with an interpretable
approach (rule mining).

6.2 Features
We briefly discuss the features used by the selected XGB model.

Figure 10 shows 10 of the model features ranked by their aver-

age gain, a measure of the average loss reduction when using a

feature for splitting the data in XGB. All features relate to rele-

vant properties of DDoS attack vectors known from literature (e.g.,

[25, 26, 31, 34, 38, 58, 61]). The features encode temporarily stable

properties of the DDoS attack vectors, e.g., the abused protocols,

ports, or packet sizes as well as potentially drifting features such as

the source IP (possible reflector). Since reflector IPs can change over

time, we evaluate the temporal model drift in § 6.3 and specifically

focus on reflector IPs in Figure 12. We show that temporal stability

is no practical problem with modest re-training. We remark that

all shown features are automatically identified by the algorithm

without a-priori knowledge and thus will also adapt to new attack

vectors as we show in Figure 13 later on.

6.3 Temporal Model Drift
Since traffic patterns change over time, the temporal stability of the

trained models is of relevance to any practical application. This as-

pect involves two basic questions. First, the relevance of the length

of training period, i.e., for how long should a model be trained

before it can be used? Second, the model drift over time, i.e., how

often does a model need to be re-trained to maintain performance?

We argue that both aspects are crucial for any practical deployment.

With the evaluation of model performance over large traffic traces,

we provide the first evaluation of temporal stability and comple-

ment a large body of prior work that focuses on showing model

performance over the entire dataset only.

For how long do we need to train? To answer this question, we

show the XGB model performance as 𝐹𝛽=0.5 score over time for

(a) One-shot training.

(b) Sliding Window training.

Figure 11: XGBmodel performance as 𝐹𝛽=0.5 score over time (YYYY-MM-DD) for IXP-US1, IXP-CE1 and a model learned on all
five IXPs. The training intervals are one i) day (blue), ii) week (orange) or iii) month (green).

IXP-US1, IXP-CE1 and a model learned on all five IXPs (ALL) in Fig-

ure 11a. We perform a one-shot training using an interval of one i)
day, ii) week, and iii) month at the beginning of the data while pre-

dicting and scoring the performance on each of all remaining days.

The model learned on the first day becomes quickly outdated with

an 𝐹𝛽=0.5 dropping below 0.90 while the model learned on the first

month always reaches a 𝐹𝛽=0.5 above 0.90 at a median performance

of 0.989 at IXP-US1. The longer we train, the better the results,

regardless of the training dataset size. Longer one-shot training

periods help to reduce outliers in classification performance. We

observe this for all IXPs (not shown).

How often do we need to re-train? Once trained, a model may

become outdated since traffic patterns change over time (e.g., new

attack vectors or new DDoS reflection hosts). We thus evaluate the

effect of re-training frequency on model performance and show

the performance of the XGB model when trained daily on a sliding

window covering the past i) day, ii)week, or iii)month in Figure 11b.

There is a clear overall increase of the performance compared to

one-shot learning in Figure 11a. While increasing the size of the

sliding window does not increase median performance too much, it

helps to reduce outliers. The best performance is achievedwith daily

re-training on the last month for the XGB model. This approach

results in a median 𝐹𝛽=0.5 of 0.993 (IXP-US1) and 0.978 (IXP-CE1)

while never dropping below 0.95. Note that XGB can in principle

learn incrementally, but this may be detrimental in the presence

of temporarily shifting features such as reflector IPs; these require

forgetting information when, e.g., IPs are repurposed in a legitimate

way. Thus, re-training is (currently) the better option.

Takeaway. The more time passes between learning and predicting,
the lower the performance, i.e., a trained model becomes outdated
quickly. This can be fixed easily, either by continuous re-training or by
training over longer time periods (e.g., one week or one month), where
re-training with a sliding window of one month is the recommended
method according to our results.

6.4 Geographic Model Drift
Given that training is complex and that quality training data is

hard to obtain, it might be sufficient to train a model once and then

share it. Given the lack of a rich enough training set, this aspect

has not yet been investigated. We study this question by training

all ML models at each IXP location once and then apply each to all

other locations. We show 𝐹𝛽=0.5 for the best performing model as

a heatmap in Figure 12 (left). For legibility, we cut off the color bar

at 𝐹𝛽=0.5 = 0.95.

The results show that XGB can outperform any other algorithm

when either training and testing is done with data from the same

IXP (diagonal values) or XGB is trained on all available data and

tested on the data of any IXP (top row). In these cases, XGB can

reach a performance close to a perfect score of 1.0. However, when

transferring models between IXPs, performance can be seriously

harmed and other algorithms can outperform XGB with no clear

winner. Please note the locations are sorted by increasing dataset

size with IXP-CE1 being the largest. With the exception of IXP-US2

and IXP-CE2, the models trained on the largest IXP-CE1 can be

transferred to other locations with decent performance.

Recall we stated in § 5.2.2 thatWoE encoding is useful to separate

local information from the classifier. We will substantiate this claim

in the following by i) investigating the overlap of WoE encodings

between different IXPs and ii) evaluating a transfer of only the

classifier between IXPs while keeping the local WoE encoding local.

Figure 12 (middle) analyses the overlap of source IPs appearing in

theWoE encoding. In order to restrict this analysis to the knowledge

of reflectors, we only consider source IPs with a WoE> 1.0, i.e., IPs

that are 𝑒 = 2.71 times more likely to send traffic to a blackhole

than not. The overlap analysis plot indicates a very low overlap

of DDoS reflection hosts among IXPs. Consequently, in the case

of a model transfer across geographies, the ML-models cannot

rely on knowing the source IPs anymore and need to utilize other

location independent features. Note that knowledge on reflection

Figure 12: Geographic model drift across different IXPs.

hosts is only one of multiple features exhibiting locality. We have

done a similar analysis for transport ports, which have an order of

magnitude more overlap; nevertheless the analysis indicates that

not all DDoS vectors are visible at all IXPs.

To test the hypothesis that WoE encoding abstracts local know-

ledge from the classifier, we repeat the transfer of models between

IXPs, but this time we only transfer the actual classifier while keep-

ing the local WoE encoding (see 12, right plot). The classification

performance increases to more than 98% with XGB being the win-

ning model in almost all cases, except for transfers between very

small IXPs like IXP-CE2 and IXP-US2. This shows that i) WoE en-

coding enables efficient abstraction from local knowledge while

ii) it is nearly irrelevant where the classifier on top is learning,

but learning on more (WoE encoded) data is helpful (e.g. IXP-CE1

compared to IXP-CE2).

Takeaway.When keeping local information in WoE scores, models
are transferable between IXPs with only a very minimal performance
penalty. Slightly better performance can be obtained when joining all
IXPs to generate a joint XGB model.

6.5 Learning new DDoS Vectors
This section demonstrates how IXP Scrubber picks up new attack

vectors without intervention by IXP operators using the two year

dataset of IXP-SE. Figure 13 shows how the WoE and classification

performance varies over time for individual attack vectors. We

present the WoE of the SNMP, SSDP, memcached DDoS vectors

identified by their respective protocol and transport ports. Once

these new attack vectors are blackholed by IXP members, their

WoE starts to rise, as the attack vectors are predominantly found

in blackholing traffic rather than benign traffic. This shows that

IXP Scrubber can learn new, previously unknown DDoS attacks.

As a reference, we plot the WoE of HTTP, which has a constantly

negative WoE as it is predominantly found outside the blackhole.

We additionally display the 𝐹𝛽=0.5 score of XGB for each vector

with incremental training in the lower part of Figure 13. The first

9 weeks of the dataset are used to warm up the algorithm and are

thus omitted. For the SNMP and SSDP attack vectors, we trained

XGB 30 times in the period from week 2020-00 to week 2020-30,

using an additional week of data in each iteration. For memcached,

we did the same in the period from week 2020-20 to week 2020-50.

We validated each of the trained models using a test set consisting

of data from week 2020-51 to week 2021-42. It can be seen that as

the WoE of an attack vector increases, so does the classification

performance of XGB. In particular, for SSDP, this is illustrated by

two increases in WoE and 𝐹𝛽=0.5 score at successive points.

Takeaway. IXP Scrubber can pick up new DDoS vectors without
intervention of IXP operators and converges to high classification
performance the more frequently a vector is blackholed.

6.6 Local Explainability
One of the major contributions of the IXP Scrubber is local ex-

plainability of ML classifications. Classification decisions can be

explained with two mechanisms: i) by observing WoE encodings

and ii) by the mined rule tags that identify problematic header com-

binations and may likewise act as ACL definitions to filter DDoS

traffic. Remember, rule tags are preserved during aggregation (§ 5)

and can be investigated alongside each classification decision simi-

lar to the WoE encoding.

Mined rule tags. Figure 14a demonstrates the value of tagging

rule mining for local explainability. Each matching tagging rule is

annotated to the training set during aggregation (but not used for

classification to avoid data leakage). In cases where the classifica-

tion of XGB and RBC overlap, i.e., in cases where XGB classifies

positively and a mined tagging rule matched the traffic, we can

use the annotated tagging rules to locally explain the classification

result (or use them as ACLs for actual filtering). This is the case

in 70.9% of the records in all datasets. In 30% of the cases with

coherent decisions, we can provide at least one rule to interpret

the classification, in 50% of the cases we can provide up to 3 rules.

Note that the absence of mined rules does not mean that an attack

cannot be mitigated; the operator can still use the information to

rate limit traffic to attacked target IPs based on the decision of XGB.

Figure 13: IXP Scrubber learns new DDoS vectors without IXP operators’ intervention as they are blackholed.

(a) Rule tags per coherent positive decision XGB/RBC.

(b) WoE distr. of top four XGB features for tp/fp.

Figure 14: Tagging rule annotations and WoE encoding en-
able local explainability.

WoE encoding. Figure 14b compares WoE distributions for true

positive/false positive classifications for the four top WoE encoded

features for XGB. The results show considerably different distri-

butions for true and false classifications, where false positives are

more likely to exhibit lower WoE scores compared to true positives,

especially with respect to unknown source IPs (WoE= 0). A false

positive can be mitigated by moving one or more feature’s WoE out-

side the WoE distribution for true positives, e.g., whitelisting source

IPs or transport ports with a static, negative WoE. The analysis for

true negatives/false negatives looks similar (not shown).

Takeaway. WoE encoding of individual features provides strong evi-
dence for the classification of DDoS traffic. The same is true for anno-
tated, mined tagging rules. Both can be used to locally explain and
control individual classification decisions made by the ML algorithm.

7 CONCLUSIONS
This paper tackles detecting and filtering DDoS attacks directly at

the core of the Internet: at IXPs. As today’s (commercial) solutions

filter at the edge, this paper proposes IXP Scrubber, an ML-based

system for detecting and filtering DDoS traffic at the core and

at scale. IXP Scrubber is based on a two-step ML model learning

continuously and without IXP operators’ intervention. It proposes a

method to extract arbitrary large volumes of DDoS training samples

from blackholing traffic—a rich data source that has never been

used as input for building systems. IXP Scrubber reaches high

classification quality (more than 0.98 𝐹𝛽=0.5-score on all targets

and more than 0.99 𝐹𝛽=0.5-score for the largest attack vectors).

With reasonable amounts of training data (one month) in a sliding

window training setting, the IXP Scrubber ML model maintains

a high temporal stability (median 𝐹𝛽=0.5-score between 0.978 and

0.994, depending on the vantage point).We demonstrate the benefits

of WoE encoding for i) making models geographically transferable

without performance penalty and ii) for contributing to the models’

local explainability by showing how high WoE values of certain

features can be correlated with the classification outcomes. The

latter, in combination with our rule tagging approach, was shown

to be able to interpret problematic packet header combinations

leading to a DDoS classification of traffic.

Acknowledgements
We thank the anonymous reviewers and our shepherd Walter Will-

inger for their constructive comments. We further thank our col-

leagues for their ongoing support and our significant others for

their tremendous patience. This work was funded by the German

Federal Ministry of Education and Research (BMBF) grant AIDOS

(grant number 16KIS0975K and 16KIS0976).

REFERENCES
[1] 1999. KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html. Accessed: 2022-01-25.

[2] 2022. CIC DoS Dataset (2017). https://www.unb.ca/cic/datasets/dos-dataset.html.

Accessed: 2022-01-25.

[3] 2022. DARPA Intrusion Detection Evaluation. https://archive.ll.mit.edu/ideval/

index.html. Accessed: 2022-01-31.

[4] 2022. DDoS 2007 Attack. https://catalog.caida.org/details/dataset/ddos_attack_

2007. Accessed: 2022-1-31.

[5] 2022. DecisionTreeClassifier. https://scikit-learn.org/stable/modules/generated/

sklearn.tree.DecisionTreeClassifier.html. Accessed: 2022-02-02.

[6] 2022. FastNetMon. https://fastnetmon.com/. Accessed: 2022-01-26.

[7] 2022. Intrusion Detection Evaluation Dataset (CSE-CIC-IDS2018). https://www.

unb.ca/cic/datasets/ids-2018.html. Accessed: 2022-01-31.

[8] 2022. Intrusion Detection Evaluation Dataset (ISCXIDS2012). https://www.unb.

ca/cic/datasets/ids.html. Accessed: 2022-01-25.

[9] 2022. LinearSVC. https://scikit-learn.org/stable/modules/generated/sklearn.svm.

LinearSVC.html. Accessed: 2022-02-02.

[10] 2022. Naive Bayes. https://scikit-learn.org/stable/modules/classes.html?

highlight=naive%20bayes#module-sklearn.naive_bayes Accessed: 2022-02-02.

[11] 2022. NeuralNet. https://skorch.readthedocs.io/en/stable/user/neuralnet.html.

Accessed: 2022-02-02.

[12] 2022. Scikit learn: Stratified k-fold. https://scikit-learn.org/stable/modules/

cross_validation.html#stratified-k-fold Accessed: 2022-07-01.

[13] 2022. XGBoost Parameters. https://xgboost.readthedocs.io/en/stable/parameter.

html. Accessed: 2022-02-02.

[14] R. Agrawal, T. Imieliński, and A. Swami. 1993. Mining Association Rules Between

Sets of Items in Large Databases. In ACM SIGMOD.
[15] Akamai. 2018. Memcached DDoS Explained. https://www.akamai.com/our-

thinking/threat-advisories/memcached-ddos-explained. Accessed: 2022-07-01.

[16] A. Aljuhani. 2021. Machine Learning Approaches for Combating Distributed

Denial of Service Attacks in Modern Networking Environments. IEEE Access 9
(2021), 42236–42264.

[17] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z.

Durumeric, et al. 2017. Understanding the Mirai Botnet. In USENIX Security.
[18] B. Arzani, K. Hsieh, and H. Chen. 2021. Interpretable Feedback for AutoML

and a Proposal for Domain-Customized AutoML for Networking. In SIGCOMM
HotNets.

[19] M. Nawrockiand J. Blendin, C. Dietzel, T. C. Schmidt, and M. Wählisch. 2019.

Down the Black Hole: Dismantling Operational Practices of BGP Blackholing at

IXPs. In ACM IMC.
[20] K. Bock, A. Alaraj, Y. Fax, K. Hurley, E. Wustrow, and D. Levin. 2021. Weaponizing

Middleboxes for TCP Reflected Amplification. In USENIX Security.
[21] A. Büscher and T. Holz. 2012. Tracking DDoS Attacks: Insights into the Business

of Disrupting the Web. In USENIX Workshop on LEET.
[22] O. Çetin, C. Gañán, L. Altena, T. Kasama, D. Inoue, K. Tamiya, Y. Tie, K. Yoshioka,

and M. van Eeten. 2019. Cleaning Up the Internet of Evil Things: Real-World

Evidence on ISP and Consumer Efforts to Remove Mirai. In NDSS.
[23] T. Chan and C. Guestrin. 2016. Xgboost: A Scalable Tree Boosting System. In

SIGKDD.
[24] A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel, C.

Chen, J. Deaton, J. Eisenstein, M. D. Hoffman, et al. 2020. Underspecification

Presents Challenges for Credibility in Modern Machine Learning. arXiv preprint
arXiv:2011.03395 (2020).

[25] S. Das, A. M. Mahfouz, D. Venugopal, and S. Shiva. 2019. DDoS intrusion detection

through machine learning ensemble. In 2019 IEEE 19th international conference
on software Quality, Reliability and Security Companion (QRS-C). IEEE, 471–477.

[26] F. S. de Lima Filho, F. A. F. Silveira, A. de Medeiros Brito Júnior, G. Vargas-Solar,

and L. F. Silveira. 2019. Smart Detection: An Online Approach for DoS/DDoS

Attack Detection Using Machine Learning. Security and Communication Networks
2019 (2019), 1574749:1–1574749:15.

[27] B. S. Kiruthika Devi, G. Preetha, G. Selvaram, and S. Mercy Shalinie. 2014. An Im-

pact Analysis: Real Time DDoS Attack Detection and Mitigation Using Machine

Learning. In 2014 ICRTITA. IEEE, 1–7.
[28] C. Dietzel, A. Feldmann, and T. King. 2016. Blackholing at IXPs: On the Effective-

ness of DDoS Mitigation in the Wild. In PAM.

[29] C. Dietzel, M. Wichtlhuber, G. Smaragdakis, and A. Feldmann. 2018. Stellar:

Network Attack Mitigation Using Advanced Blackholing. In ACM CoNEXT.
[30] T. Greene. 2016. How the Dyn DDoS Attack Unfolded. https://www.

networkworld.com/article/3134057/how-the-dyn-ddos-attack-unfolded.html.

Accessed: 2022-07-01.

[31] Y. Gu, K. Li, Z. Guo, and Y.Wang. 2019. Semi-Supervised K-means DDoSDetection

Method Using Hybrid Feature Selection Algorithm. IEEE Access 7 (2019), 64351–
64365.

[32] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G. Z. Yang. 2019. XAI-

Explainable Artificial Intelligence. Science Robotics 4, 37 (2019), eaay7120.
[33] J. Han, J. Pei, and Y. Yin. 2000. Mining Frequent Patterns without Candidate

Generation. In ACM SIGMOD.

[34] B. Jia, X. Huang, R. Liu, and Y. Ma. 2017. A DDoS Attack Detection Method Based

on Hybrid Heterogeneous Multiclassifier Ensemble Learning. J. Electr. Comput.
Eng. 2017 (2017), 4975343:1–4975343:9.

[35] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti. 2017.

Millions of targets under attack: a macroscopic characterization of the DoS

ecosystem. In ACM IMC.
[36] T. King, C. Dietzel, J. Snijders, G. Doering, and G. Hankins. 2016. BLACKHOLE

Community. IETF RFC 7999.

[37] D. Kopp, C. Dietzel, and O. Hohlfeld. 2021. DDoS Never Dies? An IXP Perspective

on DDoS Amplification Attacks. In PAM.

[38] D. Kopp, M. Wichtlhuber, I. Poese, J. Santanna, O. Hohlfeld, and C. Dietzel. 2019.

DDoS Hide and Seek: On the Effectiveness of a Booter Services Takedown. In

ACM IMC.
[39] B. Krebs. 2016. KrebsOnSecurity Hit With Record DDoS. https://krebsonsecurity.

com/2016/09/krebsonsecurity-hit-with-record-ddos. Accessed: 2022-07-01.

[40] X. Luo and R. KC. Chang. 2005. On a New Class of Pulsing Denial-of-Service

Attacks and the Defense.. In NDSS.
[41] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. 2021. A Survey

on Bias and Fairness in Machine Learning. ACM Computing Surveys (CSUR) 54, 6
(2021), 1–35.

[42] J. Mohamed. 2016. Daily Mirror: Hackers Attack the Stock Exchange: Cyber Crim-

inals Take Down Website for more than Two Hours as Part of Protest Against

World’s Banks. http://www.dailymail.co.uk/news/article-3625656/Hackers-

attack-Stock-Exchange-Cyber-criminals-website-two-hours-protest-against-

world-s-banks.html. Accessed: 2022-07-01.

[43] C. Morales. 2018. NETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack; The Terabit

Attack Era Is Upon Us. https://www.netscout.com/blog/asert/netscout-arbor-

confirms-17-tbps-ddos-attack-terabit-attack-era. Accessed: 2022-07-01.

[44] G. C. M. Moura, C. Hesselman, G. Schaapman, N. Boerman, and O. de Weerdt.

2020. Into the DDoS Maelstrom: A Longitudinal Study of a Scrubbing Service. In

IEEE EuroS&P Workshops. 550–558.
[45] M. Nawrocki, M. Jonker, T. C. Schmidt, and M. Wählisch. 2021. The Far Side of

DNS Amplification: Tracing the DDoS Attack Ecosystem from the Internet Core.

In ACM IMC.
[46] M. Prince. 2013. The DDoS That Knocked Spamhaus Offline (And How We

Mitigated It). https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-

offline-and-ho/. Accessed: 2022-07-01.

[47] M. Prince. 2014. Technical Details Behind a 400Gbps NTP Amplification DDoS

Attack. https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-

amplification-ddos-attack/. Accessed: 2022-07-01.

[48] C. Rudin. 2019. Stop Explaining Black Box Machine Learning Models for High

Stakes Decisions and Use Interpretable Models Instead. Nature Machine Intelli-
gence 1, 5 (2019), 206–215.

[49] A. Rukavitsyn, K. Borisenko, and A. Shorov. 2017. Self-Learning Method for

DDoS Detection Model in Cloud Computing. In 2017 IEEE EIConRusNW.

[50] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. 2018. Toward Generating a

New Intrusion Detection Dataset and Intrusion Traffic Characterization. ICISSp
1 (2018), 108–116.

[51] I. A. Sofi, A. Mahajan, and V. Mansotra. 2017. Machine Learning Techniques used

for the Detection and Analysis of Modern Types of DDoS Attacks. Int. Res. J.
Eng. Technol (2017).

[52] Akamai Technologies. 2018. 2018 State of the Internet / Security: A

Year in Review. https://web.archive.org/web/20210308082738/https:

//www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2018-

state-of-the-internet-security-a-year-in-review.pdf. Accessed: 2022-07-01.

[53] A. Toh. 2022. Azure DDoS Protection—2021 Q3 and Q4 DDoS Attack

Trends. https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-

q3-and-q4-ddos-attack-trends/. Accessed: 2022-07-01.

[54] N. N. Tuan, P. H. Hung, N. D. Nghia, N. V. Tho, T. V. Phan, and N. H. Thanh. 2020.

A DDoS Attack Mitigation Scheme in ISP Networks Using Machine Learning

Based on SDN. Electronics 9, 3 (2020).
[55] D. Wagner, D. Kopp, M. Wichtlhuber, C. Dietzel, O. Hohlfeld, G. Smaragdakis,

and A. Feldmann. 2021. United We Stand: Collaborative Detection and Mitigation

of Amplification DDoS Attacks at Scale. In ACM CCS.
[56] D. Weed. 2005. Weight of Evidence: A Review of Concept and Methods. Risk

Analysis 25, 6 (2005), 1545–1557.
[57] A. Welzel, C. Rossow, and H. Bos. 2014. On Measuring the Impact of DDoS

Botnets. In EuroSec. 1–6.
[58] X. Yuan, C. Li, and X. Li. 2017. DeepDefense: Identifying DDoS Attack via Deep

Learning. In IEEE SMARTCOMP. 1–8.
[59] ZDNet. 2018. GitHub Hit with the Largest DDoS Attack Ever Seen. https://www.

zdnet.com/article/github-was-hit-with-the-largest-ddos-attack-ever-seen/. Ac-

cessed: 2022-07-01.

[60] B. Zhang, T. Zhang, and Z. Yu. 2017. DDoS Detection and Prevention Based on

Artificial Intelligence Techniques. In 2017 IEEE ICCC. 1276–1280.
[61] N. Zhang, F. Jaafar, and Y. Malik. 2019. Low-Rate DoS Attack Detection Using

PSD Based Entropy and Machine Learning. In IEEE CSCloud and IEEE Edgecom.

59–62.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/dos-dataset.html
https://archive.ll.mit.edu/ideval/index.html
https://archive.ll.mit.edu/ideval/index.html
https://catalog.caida.org/details/dataset/ddos_attack_2007
https://catalog.caida.org/details/dataset/ddos_attack_2007
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://fastnetmon.com/
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/classes.html?highlight=naive%20bayes#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html?highlight=naive%20bayes#module-sklearn.naive_bayes
https://skorch.readthedocs.io/en/stable/user/neuralnet.html
https://scikit-learn.org/stable/modules/cross_validation.html#stratified-k-fold
https://scikit-learn.org/stable/modules/cross_validation.html#stratified-k-fold
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://www.akamai.com/our-thinking/threat-advisories/memcached-ddos-explained
https://www.akamai.com/our-thinking/threat-advisories/memcached-ddos-explained
https://www.networkworld.com/article/3134057/how-the-dyn-ddos-attack-unfolded.html
https://www.networkworld.com/article/3134057/how-the-dyn-ddos-attack-unfolded.html
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
http://www.dailymail.co.uk/news/article-3625656/Hackers-attack-Stock-Exchange-Cyber-criminals-website-two-hours-protest-against-world-s-banks.html
http://www.dailymail.co.uk/news/article-3625656/Hackers-attack-Stock-Exchange-Cyber-criminals-website-two-hours-protest-against-world-s-banks.html
http://www.dailymail.co.uk/news/article-3625656/Hackers-attack-Stock-Exchange-Cyber-criminals-website-two-hours-protest-against-world-s-banks.html
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://web.archive.org/web/20210308082738/https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2018-state-of-the-internet-security-a-year-in-review.pdf
https://web.archive.org/web/20210308082738/https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2018-state-of-the-internet-security-a-year-in-review.pdf
https://web.archive.org/web/20210308082738/https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2018-state-of-the-internet-security-a-year-in-review.pdf
https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q3-and-q4-ddos-attack-trends/
https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q3-and-q4-ddos-attack-trends/
https://www.zdnet.com/article/github-was-hit-with-the-largest-ddos-attack-ever-seen/
https://www.zdnet.com/article/github-was-hit-with-the-largest-ddos-attack-ever-seen/

Figure 15: Association rules afterminimization for different
combinations of support loss 𝐿𝑠 and confidence loss 𝐿𝑐 .

(a) CDF of correlation matrix (absolute values).

(b) Principal component analysis.

Figure 16: Correlation introduced by aggregation.

Appendices are supportingmaterial that has not been peer-reviewed.

A PARAMETER SENSITIVITY STUDY RULE
MINIMIZATION

This appendix discusses how to set the 𝐿𝑐 /𝐿𝑠 parameters for Al-

gorithm 1 in § 5.1.1. Setting these loss parameters too high might

eliminate many but also relevant rules, while setting them too low

will result in many but redundant rules. Thus, we conduct a param-

eter sensitivity study shown in Figure 15. The figure presents the

remaining amount of rules for different 𝐿𝑐 /𝐿𝑠 settings; the upper

right quadrant shows that reducing aggressively beyond 𝐿𝑐 = 0.01

and 𝐿𝑠 = 0.01 does not result in a much lower amount of remaining

filtering rules, but increases the likelihood on eliminating relevant

rules. Consequently, we choose these settings for the experiments

conducted in this work.

B CORRELATION INTRODUCED BY FLOW
AGGREGATION

In step 2 of IXP Scrubber (§ 5.2), we deliberately generate redun-

dant/correlated feature columns in the aggregated dataset to have

a broad base of features to select from. These features are then

reduced with feature elimination. We validate that the resulting fea-

tures are indeed correlated. Figure 16a demonstrates the correlation

as CDF of a Spearman correlation matrix’s values. Depending on

the columns’ metrics (aggregation by packets, bytes or packet size),
20% of the columns have a correlation > 0.7 or > 0.8, respectively.

Figure 16b shows the results of a PCA of the aggregated dataset,

revealing the first twenty components already explain 0.8 of the

total variance in the dataset, whereas 50 components are explain-

ing close to all variance. This shows great potential for reducing

the number of input features for classifiers with a single matrix

multiplication using the result of a PCA as done for NN in § 5.2.

C ML MODEL OPTIMIZATION
In any ML application, hyperparameter search represents a classical

performance tuning step that chooses the optimal set of parameters

for each ML algorithm. We next describe the applied tuning of the

ML models in step 2 of IXP Scrubber.

We applied a grid search to determine the hyperparameters of

the ML models used. The hyperparameters and their considered

values are shown in Table 4. Due to the size of the dataset and

the long runtime when it is fully used, we sampled 250K records

from the data of all IXPs to perform the grid search. Each of the

parameter combinations of a model was validated using 3-fold

cross-validation. The training of a model was then repeated three

times for a parameter combination where each fold was used once

for validation, and the rest of the data formed the training set.

The performance of model variations was determined using the

mean 𝐹𝛽=0.5 score of the three folds. A detailed description of the

hyperparameters can be found in the documentation of the model

implementations [5, 9–11, 13].

D COMPLETE ML MODEL CLASSIFICATION
RESULTS

Table 5 shows the complete classification results of all evaluated

models. This represents an extended version of Table 3, in which we

omitted alternative naive Bayes variants that did reach comparable

performance. This includes Bernoulli (NB-B) and multinomial (NB-

M) distributions, as well as the complement naive Bayes classifier

(NB-C). All other performance figures are the same as in Table 3.

E IXP SCRUBBER SECURITY
DDoS has always been a game of cat-and-mouse between attack-

ers and mitigation solutions—IXP Scrubber is no different. Thus,

it makes sense to anticipate attack scenarios on the IXP Scrubber

Classifier Parameter Parameter Space

Naive Bayes var. smoothing1 {10
−9
, 10
−8
, 10
−7
, 10
−6
, 10
−5
, 10
−4
, 10
−3
, 0.01, 0.1, 1}

additive smoothing2 {10
−8
, 10
−4
, 10
−3
, 0.01, 0.1, 0.5, 1.0, 2.0, 10.0}

Decision Tree ccp alpha {10
−9
, 10
−7
, 10
−5
, 0}

min. impurity decrease {10−5, 10−3}
min. samples leaf {1, 100, 300}
min. samples split {2, 100}

XGBoost # estimators {2, 4, 8, 16, 24}
max. depth {4, 8, 16, 24}
learning rate {0.01, 0.1, 0.2, 0.3}

LSVC regularization (C) {10−5, 10−4, 10−3, 0.01 , 0.1, 1, 10, 100, 1000, 10000}
class weight {none, balanced}
optimization {primal, dual}
loss {hinge, squared hinge}

Neural Network # PCA components {25, 50, 75}
neurons hidden layer {4, 8, 16, 32}
dropout {0 , 0.3, 0.6, 0.9}

learning rate {10
−5
, 6.3 · 10−5, 3.9 · 10−4, 2.5 · 10−3}

1
Applies only to the Gaussian Naive Bayes.

2
Applies to Naive Bayes types other than Gaussian.

Table 4: Overview of the classifiers’ hyperparameter space. The selected parameters are marked in bold letters.

Table 5: Classification results (except the last column) are based on a random 2/3 train set 1/3 test set split on all dataset
combined. The last column applies models learned on 2/3 of all datasets to self-attack data.

𝐹𝛽=0.5 𝐹1 mcc tnr fnr tpr fpr UDP DNS NTP SNMP LDAP SSDP Apple 𝐹𝛽=0.5
Fragm. RD (all on SAS)

XGB 0.989 0.988 0.015 0.988 0.012 0.988 0.012 0.994 0.994 0.993 0.996 0.993 0.971 0.993 0.961

NN 0.985 0.976 0.043 0.990 0.039 0.961 0.010 0.994 0.993 0.990 0.996 0.991 0.959 0.991 0.631

LSVM 0.978 0.973 0.001 0.981 0.035 0.965 0.019 0.993 0.993 0.990 0.996 0.991 0.958 0.990 0.963
NB-G 0.978 0.959 0.022 0.991 0.071 0.929 0.009 0.993 0.993 0.990 0.996 0.991 0.959 0.991 0.425

DT 0.965 0.950 0.004 0.974 0.072 0.928 0.026 0.991 0.991 0.987 0.994 0.990 0.963 0.991 0.954

NB-C 0.898 0.908 0.018 0.881 0.075 0.925 0.119 0.991 0.991 0.989 0.996 0.991 0.958 0.989 0.568

NB-M 0.894 0.906 0.018 0.873 0.072 0.928 0.127 0.991 0.991 0.989 0.996 0.991 0.958 0.989 0.568

RBC - - - - - - - - - - - - - - 0.917
NB-B 0.769 0.768 0.022 0.757 0.233 0.767 0.243 0.944 0.931 0.943 0.730 0.940 0.635 0.694 0.000

DUM 0.511 0.506 - 0.501 0.498 0.500 0.499 - - - - - - - 0.530

model itself, i.e., attempts to data poisoning to influence classifica-

tion results. In other words, can the IXP Scrubber be influenced by

an attacker injecting manipulated traffic?We argue that performing

such an attack is challenging, resource intense, and thus unlikely.

Impacting the classification output requires the attacker to change

the WoE encoding of the features. The WoE encoding of one fea-

ture shall either be changed i) from positive to negative/neutral

or ii) from negative/neutral to positive. The objective of i) is to
hide attack traffic and of ii) to produce false positives, i.e., the IXP

Scrubber classifies benign traffic as malicious. However, for both

scenarios a sophisticated attacker must rent ports at IXPs and send

traffic with certain patterns to his own IP space. Additionally in

case of ii) the attacker has to announce blackhole announcements

for his own IP space.

Depending on the encoding to be influenced, substantial amounts

of traffic need to be generated. For instance, attacking HTTP(S)

would require to send at least as much HTTP(S) traffic as can be

found outside the blackhole—over long time frames. At large traffic

hubs, this would correspond to multiple terabit of sustained attack

traffic (recall that the bulk of the traffic is not blackholed). In any

case, the IXP Scrubber operator can still react by setting the WoE

encodings of certain feature values to a suitable constant (see § 6.6);

this will most likely be done by operators for well-known DDoS

features anyways, e.g., setting a positive WoE for DDoS transport

ports and a negative one for important protocols like HTTP(S).

The most likely scenario is that attackers create a positive WoE

for hosts by spoofing source IPs, which may qualify these hosts as

DDoS reflectors. However, spoofed IPs are present in DDoS traffic

as of today and the algorithms presented in this work can cope

with spoofed IPs. After all, the classification is not only based on

the WoE of source IPs, but also on other criteria like transport ports

and even more importantly the traffic volumes that are measured

per source IP, transport ports, etc. (see Figure 10).

Summing up, poisoning IXP Scrubber’s training data requires

the attacker to rent sufficient port capacity at the IXP and to inject

substantially high volumes of traffic. This way, the security prop-

erties of IXP Scrubber follow a classical assumption that assumes

that the majority of the traffic/participants are not malicious (e.g.,

similar to Tor where a majority of nodes needs to be malicious to

compromise the system).

F SUPPLEMENTAL MATERIAL
The mined filtering rules (see § 5.1) are made available via Github

(https://github.com/DE-CIX/ripe84-learning-acls) under the GPLv3

open source license. The list comprises roughly 300 filtering rules in

a JSON format with a confidence of > 0.9, i.e., a packet matching the

rule has a probability >90% to be routed to a blackhole according

to our dataset. A sample rule is listed below.

Please note there are some caveats with the encoding, see repos-

itory’s README. The released list may be used in multiple ways,

e.g., for generating Access Control Lists (ACLs) for blocking/moni-

toring or for classifying packet traces. More detailed, researchers

can use this list for tagging DDoS flows in traffic traces (on the flow

or even packet level) with tunable confidence (see confidence field

in the rule definition). For an assessment of the performance of all

rules applied together, see § 6.1 (RBC classifier). Moreover, this list

can be used in more practical settings to generate sets of ACLs to

monitor and/or block DDoS attacks with low effort.

1 "0a42ee90": { # Unique identifier
2 "protocol":17, # Protocol (IANA code)
3 "port_src":123, # Transport src port
4 "port_dst":28960 , # Transport dst port
5 "packet_size":"(400 ,500]", # Packet size interval
6 "confidence":0.99, # Confidence , see §6.1
7 "antecedent␣support":1021 # Ant. supp., see §6.1
8 }

https://github.com/DE-CIX/ripe84-learning-acls

	Abstract
	1 Introduction
	2 Related Work
	3 Blackholing: Crowdsourced DDoS labeling
	4 Datasets From Five IXPs
	4.1 Dataset Overview
	4.2 Dataset Validation
	4.3 Ethical Considerations

	5 Ml-design of the IXP Scrubber
	5.1 Step 1: Rule Tagging
	5.2 Step2:AggregationfromFlowsto TargetsandClassification

	6 IXP Scrubber evaluation
	6.1 ML Model Classification Performance
	6.2 Features
	6.3 Temporal Model Drift
	6.4 Geographic Model Drift
	6.5 Learning new DDoS Vectors
	6.6 Local Explainability

	7 Conclusions
	References
	A Parameter Sensitivity Study Rule Minimization
	B Correlation introduced by flow aggregation
	C ML model optimization
	D Complete ML Model Classification Results
	E IXP Scrubber security
	F Supplemental Material

