#### **Prefixes and Autonomous Systems**

BGP for networks who peer: Part 1

Wolfgang Tremmel wolfgang.tremmel@de-cix.net

Where networks meet

**DE CIX** 

# **IP Prefixes**



Where networks meet



# 10.3.8.17



Where networks meet



### 10.3.8.0722



Where networks meet

www.de-cix.net

4



#### 

- → IPv4 and IPv6 addresses have a network and a host part
- → A prefix is just the network part + the length of the network part
- → Important:



• The boundary between network and host can be anywhere!

Where networks meet

#### **Characteristics of Prefixes: IPv4**



#### Prefix-Length: 0-32

#### 

Notation: • 4 Numbers 0-255 • Separated by "." • a "/", followed by

DEC

Where

Host-part all zero

www.de-cix.net

32 Bits long



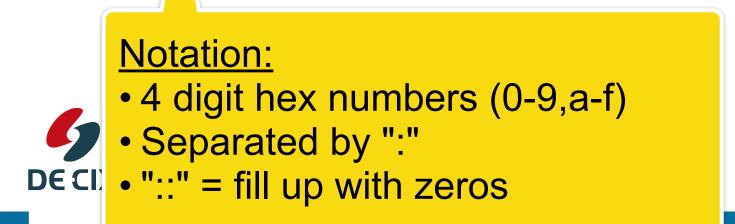
#### 2003:de:274f:400:226:b0ff:fed8:3d8a



Where networks meet



#### 2003:de:274f:400:206:b0ff:fed8:3d8a




Where networks meet

#### **Characteristics of Prefixes: IPv6**

#### Prefix-Length: 0-128

#### 2003:de:274f:400::/64



#### Host-part all zero

#### 128 Bits long

#### **IP Adresses and Prefixes**

#### Prefix or Not?

|                    | IPv4                       | IPv6                |
|--------------------|----------------------------|---------------------|
| Length             | 32 Bit                     | 128 Bit             |
|                    | 0-32 Prefix Length         | 0-128 Prefix Length |
| Notation           | 4 Numbers, 0-255           | 8 Numbers, 0-fffff  |
| Separator          | -                          | -                   |
| Prefix: Host part  | all zero                   |                     |
| Address: Host part | not all zero / not all one |                     |
| Example (Prefix)   | 198.51.100.0/24            | 2001:db8:4f30::/48  |

# 198.51.100.0/24



### 2001:db8:5669::/48



# 203.0.113.99/32

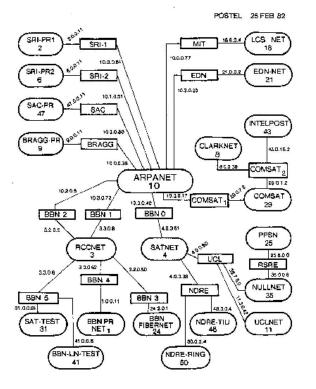
# 198.51.100.0/16Host part not zero!

#### What is an Autonomous System?

And why do I need one?



Wolfgang Tremmel academy@de-cix.net

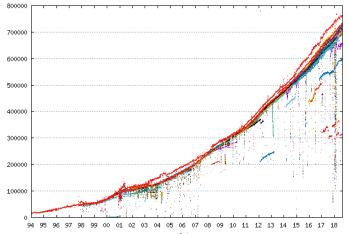

Where networks meet

#### A brief history of the Internet

According to the Internet Hall of Fame

- → 1982 Arpanet (successor of Internet)
- → 1982: RFC827 defines Exterior Gateway Protocol:

"Autonomous systems will be assigned 16-bit identification numbers (in much the same ways as network and protocol numbers are now assigned)"






#### Some years later...

- → January 2025: There are 77890 active ASs (source: http://bgp.he.net/report/prefixes#\_networks)
- → In 2001, planning to extend AS numbers to 4 bytes began
- → This was finalized as a RFC (standard) in May 2007 (see <u>RFC6793</u>)
- → Today, 4-byte AS number are assigned
  - → They are supported by all modern routers
  - → You can no longer request a 2-byte AS number
  - → There is also no reason for requesting one





#### What is an Autonomous System?

#### Simple Definition

• A group of IP prefixes

#### Formal Definition (RFC1930):

"An AS is a connected group of one or more IP prefixes run by one or more network operators which has a SINGLE and CLEARLY DEFINED routing policy."

- But to route or announce them, you need hardware
- A router (or multiple routers)
- This router speaks BGP (to its neighbors)
- And has an Autonomous System Number configured
- Another new term: Autonomous System Number (ASN)



I am **AS196610**, DE-CIX Academy, and I announce prefix 2a02:c50:db8::/48



#### Autonomous System Number

#### or AS Number or ASN

- Initially 16bit (0...65535) they are now 32bit long (0..."a lot")
- AS numbers are globally unique

"An AS has a **globally unique** number (sometimes referred to as an **ASN**, or Autonomous System Number) associated with it; this number is used in both the exchange of exterior routing information (between neighboring ASes), and as an **identifier of the AS** itself." (*RFC1930*)

AFRINIC

LACNIC

- Unique means, somebody has to administrate them
- This is the IANA (Internet Assiged Numbers Authority)
  - But they have delegated that task to the 5 RIRs (Regional Internet Registries)
- So in Europe: Become a member of the RIPE NCC and request one

#### Regional Internet Registries (RIRs)

- →Talking about everything what RIRs do would be beyond the scope of this training
- →So, let's focus on AS numbers
- →And for now, let's focus on Europe
- →The RIR responsible for Europe, Russia and the Middle East is the RIPE NCC
- →RIPE means Réseaux IP Européens the founders wanted a French name
- →NCC means Network Coordination Center
- →RIPE is not the same as RIPE NCC, see the website for the difference.
- →Back to how to get an AS number ...

DE CIX

#### Getting an AS number from RIPE NCC: The easy way

- →Just become a customer
  - →You have to be a legal entity
  - →Fill out the forms
  - →Pay the sign-up fee (and annual fee)
- →Request your AS number
  - →You have to be/want to be multi-homed (peering counts!)
  - →<u>RIPE Academy</u> offers lots of online / offline trainings to help you get started.



#### Getting an AS number without becoming a RIPE NCC member

→You can also get an AS from someone who already is a RIPE NCC member

→This is called a "sponsoring LIR"

→Basically they request the AS from RIPE NCC for you

 $\rightarrow$ ... and may charge you for this



Where networks meet

#### Now I have an AS – how can I route my IP prefix?

- →Hmm, this depends where you have your IP space from
- →In general, IPv4 prefixes of /24 or larger are routable via BGP
- →In IPv6 you can route /48 or larger
- →If you have just become a new RIPE NCC member, you can also request IP space
  - →As there is not much IPv4 left, you get a /22 once (and not more)
  - →IPv4 is out! No more IPv4 addresses (except by transfers)



- →Yes new RIPE NCC members can still request a /24 via the waitinglist
- →But plenty of IPv6 available...



→To check whether your current space is routable from your new AS, the best way is to check with whom you got that IP space from

#### What is an Autonomous System good for?

|            | If you have an AS                                                 | Without an AS                              |
|------------|-------------------------------------------------------------------|--------------------------------------------|
| Redundancy | You can have multiple<br>upstream ISPs and Peering                | You only can have one upstream<br>ISP      |
| Control    | You have full control over your outgoing traffic                  | Your upstream ISP controls your<br>traffic |
| Cost       | You can optimize your traffic<br>for cost                         | You just pay your upstream ISP             |
| Peering    | You can setup your own<br>peering policy and have full<br>control | Your upstream ISP makes all<br>decisions   |



Where networks meet

#### Thank you!



DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

Where networks meet

#### Links and further reading



Where networks meet

#### Links visited during the webinar

#### → RFCs

- RFCs are Internet standards issued by the Internet Engineering Task Force (IETF)
- → <u>RFC4632</u>: Classless Inter-domain routing (CIDR)
- → <u>RFC4291</u>: IPv6 addressing architecture
- → <u>RFC827</u>: Exterior Gateway Architecture (EGP) (historical, obsolete)
- → <u>RFC1930</u>: Guidelines for creation, selection, and registration of an Autonomous System (AS)
- → <u>RFC6793</u>: BGP Support for Four-Octet Autonomous System (AS) Number Space

#### → AS Numbers

- → Giving AS numbers to the RIRs: <u>iana.org</u>
- → Requesting an AS number, links for:
  - → <u>ARIN</u>
  - → <u>Lacnic</u>
  - → <u>APNIC</u>
  - → <u>RIPE NCC</u>
- → <u>Afrinic</u>

