Networking Basics 06a - Domain Name System (DNS)

Wolfgang Tremmel academy@de-cix.net

医胆液剂 医碘胆己性 些

Where networks meet

DECIX

www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

Networking Basics DE-CIX Academy

- 01 Networks, Packets, and Protocols
- 02 Ethernet, 02a VLANs
- 03 IP, 03a Routing, 03b Global routing
- 04a User Datagram Protocol (UDP)
- 04b TCP
- 04c ICMP
- 05 Uni-, Broad-, Multi-, and Anycast 06a - Domain Name System (DNS)

Networking Basics DE-CIX Academy

- 01 Networks, Packets, and Protocols
- 02 Ethernet, 02a VLANs
- 03 IP, 03a Routing, 03b Global routing
- 04a User Datagram Protocol (UDP)
- 04b TCP
- 04c ICMP
- 05 Uni-, Broad-, Multi-, and Anycast 06a - Domain Name System (DNS)

 Early telephones only used numbers

Attribution: https://commons.wikimedia.org/wiki/File:Telefon_BW_2012-02-18_13-44-32.JPG

- Early telephones only used numbers
- If you did not know the number to call, you had to look it up

Attribution: https://commons.wikimedia.org/wiki/File:Telefon_BW_2012-02-18_13-44-32.JPG

- Early telephones only used numbers
- If you did not know the number to call, you had to look it up
- In a phonebook

Attribution: https://commons.wikimedia.org/wiki/File:Telefonbog_ubt-0.JPG

Internet Model IP / Internet Layer

- Data units are called "Packets"
- Provides source to destination transport

Layer	Name
5	Application
4	Transport
3	Internet
2	Link
1	Physical

Internet Model IP / Internet Layer

- Data units are called "Packets"
- Provides source to destination transport
 - For this we need addresses
 - Like 192.0.2.0.1 or 2001:db8:34:22ff:fe55::1

Layer	Name
5	Application
4	Transport
3	Internet
2	Link
1	Physical

Internet Model IP / Internet Layer

- Data units are called "Packets"
- Provides source to destination transport
 - For this we need addresses
 - Like 192.0.2.0.1 or 2001:db8:34:22ff:fe55::1
 - Hard to remember

Layer	Name
5	Application
4	Transport
3	Internet
2	Link
1	Physical

Layer Name	е
5 Applica	tio
4 Transp	ort
3 Intern	et
2 Link	
1 Physic	al

 In applications like a web browser, us not want to enter numbers

	Layer	Name
	5	Application
	4	Transport
sers do	3	Internet
	2	Link
	1	Physical

- In applications like a web browser, us not want to enter numbers
- They want to enter names, like <u>www.de-cix.net</u>

	Layer	Name
	5	Application
	4	Transport
sers do	3	Internet
	2	Link
	1	Physical

- In applications like a web browser, use not want to enter numbers
- They want to enter names, like www.de-cix.net
- So we need a Phonebook for the Internet

	Layer	Name
	5	Application
	4	Transport
ers do	3	Internet
	2	Link
	1	Physical

Attribution: https://commons.wikimedia.org/wiki/File:Telefonbog_ubt-0.JPG

• Easy: Just have a text file, with names and addresses

- Easy: Just have a text file, with names and addresses
 - This is how it actually was done in the beginning
 - The file name was /etc/hosts and it still exists on a lot of systems

- Easy: Just have a text file, with names and addresses
 - This is how it actually was done in the beginning
 - The file name was /etc/hosts and it still exists on a lot of systems
 - When the file had more than 7000 entries in the 1990s, this was discontinued

- Easy: Just have a text file, with names and addresses
 - This is how it actually was done in the beginning
 - The file name was /etc/hosts and it still exists on a lot of systems
 - When the file had more than 7000 entries in the 1990s, this was discontinued
- Solution: Have a distributed database mapping names to numbers
 - The Domain Name System (DNS) was specified in 1987

• Work began earlier: First defined in <u>RFC882</u> in 1983

- Work began earlier: First defined in <u>RFC882</u> in 1983
 - Idea: Not a single name space, but "domains"
 - Distributed (but with local caching)
 - "Tree" structured

- Work began earlier: First defined in <u>RFC882</u> in 1983
 - Idea: Not a single name space, but "domains"
 - Distributed (but with local caching)
 - "Tree" structured
- Original top-level domains were: ARPA, COM, EDU, GOV, MIL, and ORG (RFC920)
 - Country domains were also specified, NET came later

.de was registered on 1986-11-05 (IANA)

Layer	Name
5	Applicatio
4	Transport
3	Internet
2	Link
1	Physical

Originally, DNS used only UDP

Layer	Name
5	Applicatio
4	Transport
3	Internet
2	Link
1	Physical

- Originally, DNS used only UDP
- TCP was added 1987 in <u>RFC1035</u>

Layer	Name
5	Applicatio
4	Transport
3	Internet
2	Link
1	Physical

- Originally, DNS used only UDP
- TCP was added 1987 in <u>RFC1035</u>
- Both UDP and TCP are Transport Layer

	Layer	Name
	5	Application
	4	Transport
	3	Internet
	2	Link
	1	Physical

- Originally, DNS used only UDP
- TCP was added 1987 in <u>RFC1035</u>
- Both UDP and TCP are Transport Layer
 - \rightarrow so DNS belongs to the application layer

	Layer	Name
DNS	5	Application
	4	Transport
	3	Internet
	2	Link
	1	Physical

- Originally, DNS used only UDP
- TCP was added 1987 in RFC1035
- Both UDP and TCP are Transport Layer
 - \rightarrow so DNS belongs to the application layer
- New standards also allow
 - HTTPS (RFC8484)
- TLS (Transport Level Security) <u>RFC7858</u> 6 **DE CIX**

	Layer	Name
DNS	5	Application
	4	Transport
	3	Internet
	2	Link
	1	Physical

	Layer	Name
DNS	5	Applicatior
	4	Transport
	3	Internet
	2	Link
	1	Physical

• Well-known port 53 is used

	Layer	Name
DNS	5	Applicatior
	4	Transport
	3	Internet
	2	Link
	1	Physical

- Well-known port 53 is used
- Originally the idea was that DNS packets should be 512 bytes or less (to avoid fragmentation)

	Layer	Name
DNS	5	Applicatior
	4	Transport
	3	Internet
	2	Link
	1	Physical

- Well-known port 53 is used
- Originally the idea was that DNS packets should be 512 bytes or less (to avoid fragmentation)
- Today larger packets are possible (but need) to be fragmented)

	Layer	Name
DNS	5	Applicatior
	4	Transport
	3	Internet
	2	Link
	1	Physical

- Well-known port 53 is used
- Originally the idea was that DNS packets should be 512 bytes or less (to avoid fragmentation)
- Today larger packets are possible (but need to be fragmented)
 - A lot of stuff was added to DNS over the years - and packet fragmentation still can cause problems

	Layer	Name
DNS	5	Applicatior
	4	Transport
	3	Internet
	2	Link
	1	Physical

DNS - How does it work?

DNS - How does it work?

1. Queries

Nameserver for de-cix.net-Zone

Name

one

Nameserver for de-cix.net-Zone

local resolver

Cache:

www.de-cix.net = 46.31.121.136

Nameserver for de-cix.net-Zone

- Recursive query
 - "I want to know an IP address, just give me the result"
 - Used by your computer and also your local router

st give me the result' vour local router

- Recursive query
 - "I want to know an IP address, just give me the result"
 - Used by your computer and also your local router
- Non-recursive query
 - "Where do I have to look next?"
 - Used by your providers resolver

st give me the result' your local router

- Recursive query
 - "I want to know an IP address, just give me the result"
 - Used by your computer and also your local router
- Non-recursive query
 - "Where do I have to look next?"
 - Used by your providers resolver
- DNS resolvers must be able to do both

2. Zones

Units of authoritative information

- Units of authoritative information
 - Like the zones "<u>example.com</u>" or "<u>de-cix.net</u>"

- Units of authoritative information
 - Like the zones "<u>example.com</u>" or "<u>de-cix.net</u>"
 - Over which a domain server has complete authoritative information

- Units of authoritative information
 - Like the zones "<u>example.com</u>" or "<u>de-cix.net</u>"
 - Over which a domain server has complete authoritative information
- In reality often a text file with names and IP addresses in it

- Units of authoritative information
 - Like the zones "<u>example.com</u>" or "<u>de-cix.net</u>"
 - Over which a domain server has complete authoritative information
- In reality often a text file with names and IP addresses in it
 - Or a table in a database

- Units of authoritative information
 - Like the zones "<u>example.com</u>" or "<u>de-cix.net</u>"
 - Over which a domain server has complete authoritative information
- In reality often a text file with names and IP addresses in it
 - Or a table in a database
- Each zone has one *primary name server*, but each name server can serve multiple zones

- Zones start with a SOA record
- SOA means Start Of Authority
- The values configured here are very important so we will cover them all

- Zones start with a SOA record
- SOA means Start Of Authority
- The values configured here are very important so we will cover them all

example.com

• First value is the name of the zone, here "<u>example.com</u>"

3600 SOA dns.example.com. hostmaster.example.com. (

- ; serial YYYYMMDDnn 2021110200
- 86400 ; refresh (24 hours) 7200 2 hours) ; retry
- 3600000 ; expire (1000 hours)
- ; minimum (172800) 2 days)

- Zones start with a SOA record
- SOA means Start Of Authority
- The values configured here are very important so we will cover them all

- First value is the name of the zone, here "<u>example.com</u>"
- The 3600 is the TimeToLive value for the SOA record itself (3600 seconds == one hour)
 - After this time the SOA record is refreshed (anywhere it is cached)

DNS Zones Primary name server and zone contact

DNS Zones Primary name server and zone contact

- "<u>dns.example.com</u>" is the primary name server for this zone
 - There can be only one

DNS Zones **Primary name server and zone contact**

- "<u>dns.example.com</u>" is the primary name server for this zone
 - There can be only one

example.com. 36

- "<u>hostmaster.example.com</u>" is actually an email address
- replace the first "." with "@"
- So it reads hostmaster@example.com
- This is the responsible contact for the zone

00	SOA	dns.example.com	. (]	nostmaste	er.e	exan	nple.co
		2021110200	;	sorial Y	YYYY	MMI	DDnn
		86400	;	refresh	(24	hours
		7200	;	retry	(2	hours
		3600000	;	expire	(10	000	hours
		172800)	;	minimum	(2	days)

DNS Zones Serial

DNS Zones Serial

• "Serial" is an up-counting serial number of the

DNS Zones Serial

- zone file
- change

• "Serial" is an up-counting serial number of the

• If you make a change, you have to increase it, otherwise the software does not pick up the

DNS Zones Serial

- zone file
- change
- upwards

"Serial" is an up-counting serial number of the

• If you make a change, you have to increase it, otherwise the software does not pick up the

Of course you can simply start with "1" and count

DNS Zones Serial

- "Serial" is an up-counting serial number of the zone file
- If you make a change, you have to increase it, otherwise the software does not pick up the change
- Of course you can simply start with "1" and count upwards
- But best practise is to encode the date of the last change

DNS Zones Refresh

- "Refresh" is how often secondary name servers will pull the primary name server for changes
 - To indicate a change the serial numbers are compared
 - 24h are a reasonable default
 - Modern DNS software uses a "notify" mechanism

DNS Zones Refresh

 "Refresh" is how often secondary name servers will pull the primary name server for changes

 To indicate a change the serial numbers are compared

• 24h are a reasonable default

 Modern DNS software uses a "notify" mechanism

It is a real good idea to place your 2ndary name servers into different networks.

So in case of a massive outage your domain name is still resolvable.

DNS Zones Retry

 If a 2ndary name server cannot contact the primary for refresh, it waits "retry" time until it tries again

2021110200

- ; serial YYYYMMDDnn
- 24 hours) refresh (•
- ; retry 2 hours)
- ; expire (1000 hours)
- ; minimum (2 days)

DNS Zones Expire

- primary

 - 2-4 weeks are ok here

• How long a secondary name server will treat its copy of the zone valid if it cannot contact the

 Default of 1000 hours was chosen because it is a nice round value

DNS Zones Minimum

- This is the default time-to-live value for entries without an explicit TTL
- How long data is cached in other name servers
 - Value depends on how often zone data is changed
 - Two days is a good default for a stable zone
 - Lower if you change entries a lot or plan a change in the near future.

DNS Zones Minimum

- This is the default time-to-live value for entries without an explicit TTL
- How long data is cached in other name servers
 - Value depends on how often zone data is changed
 - Two days is a good default for a stable zone
 - Lower if you change entries a lot or plan a change in the near future.
 - AS196610 uses 30 minutes here

• "NS" - entries list all name servers for a zone

ns.de-cix.net. dns.de-cix.net

• We already know the primary name server from the SOA entry

- We already know the primary name server from the SOA entry
- Any zone must have at least two name servers

- We already know the primary name server from the SOA entry
- Any zone must have at least two name servers
- Non-primary name servers are called secondary name servers

- We already know the primary name server from the SOA entry
- Any zone must have at least two name servers
- Non-primary name servers are called secondary name servers
- They must also be listed in the parent zone (in this case ".net")

DNS Zones Finally - IP addresses

academyserver01

academyserver02

academyserver04

IN	A	46.31.124.66
IN	AAAA	2a02:c50:6209:704::
IN	A	91.214.253.1
IN	AAAA	2a02:c50:db8:3::2
IN	A	91.214.253.3
IN	AAAA	2a02:c50:db8:3::3

2

DNS Zones Finally - IP addresses

academyserver02

academyserver04

Reminder - "IN" stands for Internet "A" records are for IPv4 addresses "AAAA" records are for IPv6 addresses

IN	A	46.31.124.66
IN	AAAA	2a02:c50:6209:704::
IN	A	91.214.253.1
IN	AAAA	2a02:c50:db8:3::2
IN	A	91.214.253.3
IN	AAAA	2a02:c50:db8:3::3

2

DNS Zones - What else? Email delivery

- For mail delivery information, "MX" (mail exchanger) records are used
 - Here: Email for @example.com is to be delivered to two servers
 - 10 and 20 are priority values (lower means try first)

example.com.

IN	MX	10	<pre>mailgw01.example.com.</pre>
IN	MX	20	<pre>mailgw02.example.com.</pre>

DNS Zones - What else? Aliases (or: Canonical Names)

- "CNAME" records can be used to give a host a nickname
- Here paul.example.com has the nickname peter
- No other entries for peter are allowed if there is a CNAME entry

peter IN

CNAME

paul.example.com.

So now we know how to get an IP address for a name

- So now we know how to get an IP address for a name
- You query a resolver and ask for an A or AAAA record

- So now we know how to get an IP address for a name
- You query a resolver and ask for an A or AAAA record
- The resolver either
 - has the information in its cache

- So now we know how to get an IP address for a name
- You query a resolver and ask for an A or AAAA record
- The resolver either
 - has the information in its cache
 - or recursively queries the next resolver

- So now we know how to get an IP address for a name
- You query a resolver and ask for an A or AAAA record
- The resolver either
 - has the information in its cache
 - or recursively queries the next resolver
 - or gathers the information itself

- So now we know how to get an IP address for a name
- You query a resolver and ask for an A or AAAA record
- The resolver either
 - has the information in its cache
 - or recursively queries the next resolver
 - or gathers the information itself
- But what about the other way?

• How to get a name to an IP address?

How to get a name to an IP address?

- There is a special domain for this
 - IN-ADDR.ARPA for IPv4
 - IP6.ARPA for IPv6

- There is a special domain for this
 - IN-ADDR.ARPA for IPv4
 - IP6.ARPA for IPv6
- And a special record type
 - PTR

- There is a special domain for this
 - IN-ADDR.ARPA for IPv4
 - IP6.ARPA for IPv6
- And a special record type
 - PTR
- But how does a reverse query work?

• From a user standpoint its quite easy:

- From a user standpoint its quite easy:
 - dig -x 46.31.121.136 **or** dig -x 2a02:c50:6209:702::8

- From a user standpoint its quite easy:
 - dig -x 46.31.121.136 **or** dig -x 2a02:c50:6209:702::8
 - Some tool will do the work for you

- From a user standpoint its quite easy:
 - dig -x 46.31.121.136**or** dig -x 2a02:c50:6209:702::8
 - Some tool will do the work for you
 - But what is actually queried?

dig -x 46.31.121.136

dig -x 46.31.121.136

.in-addr.arpa. IN

Top - down

PTR

dig -x 46.31.121.136

.in-addr.arpa. IN

Top - down

Top - down

dig -x 46.31.121.136

.in-addr.arpa. IN

uwob - qoT

Top - down

PTR

dig -x 46.31.121.136

136.121.31.46.in-addr.arpa.

nwob - qoT

a. IN PTR

dig -x 46.31.121.136

136.121.31.46.in-addr.arpa. IN PTR myserver.example.com

umop - dol

dig -x 46.31.121.136

136.121.31.46.in-addr.arpa. IN PTR myserver.example.com

- Top down

umop - dol

• Hierarchy of IP addresses: most significant part is left

- Top down

IN PTR myserver.example.com

- Hierarchy of IP addresses: most significant part is left

- Top down

IN PTR myserver.example.com

• Hierarchy of Domain Names: most significant part is right (like .net, .com, ...)

- For IPv6, "ip6.arpa" is used as domain
- Each possible digit has its own hierarchy level

DNS Reverse and Forward Best Practise

- Have a reverse entry for all your IP addresses in use
 - Automate it!
- IF you have a "forward" entry, match the reverse
 - infrastructure

• Not all reverse entries need to have a forward entry, especially for network

• Every ISP offers DNS resolvers for its customers

- Every ISP offers DNS resolvers for its customers
 - For home-users your router picks them up automatically

- Every ISP offers DNS resolvers for its customers
 - For home-users your router picks them up automatically
- But also a number of "Public Resolvers" are available from various providers

- Every ISP offers DNS resolvers for its customers
 - For home-users your router picks them up automatically
- But also a number of "Public Resolvers" are available from various providers
 - Like Google (at 8.8.8.8), Cloudflare (at 1.1.1.1), Quad9 (at 9.9.9.9)

- Every ISP offers DNS resolvers for its customers
 - For home-users your router picks them up automatically
- But also a number of "Public Resolvers" are available from various providers
 - Like Google (at 8.8.8.8), Cloudflare (at 1.1.1.1), Quad9 (at 9.9.9.9)
 - All these (and more) use an Anycast infrastructure

- Every ISP offers DNS resolvers for its customers
 - For home-users your router picks them up automatically
- But also a number of "Public Resolvers" are available from various providers
 - Like Google (at 8.8.8.8), Cloudflare (at 1.1.1.1), Quad9 (at 9.9.9.9)
 - All these (and more) use an Anycast infrastructure
- Recently, DNS over HTTPS (<u>DoH</u>) was defined in <u>RFC8484</u>

• DNSSec is a recent initiative to make DNS more secure

- DNSSec is a recent initiative to make DNS more secure
 - By signing zones

- DNSSec is a recent initiative to make DNS more secure
 - By signing zones
 - A "chain of trust" is used to authenticate public keys
 - With the DNS root zone as trust anchor

- DNSSec is a recent initiative to make DNS more secure
 - By signing zones
 - A "chain of trust" is used to authenticate public keys
 - With the DNS root zone as trust anchor
 - Resolvers can use this to check the correctness of (cached) answers

- DNSSec is a recent initiative to make DNS more secure
 - By signing zones
 - A "chain of trust" is used to authenticate public keys
 - With the DNS root zone as trust anchor
 - Resolvers can use this to check the correctness of (cached) answers
 - This prevents an attack against DNS called "cache poisoning"

censorship

- As DNS is so central to using the In censorship
 - To suppress unwanted content

- As DNS is so central to using the In censorship
 - To suppress unwanted content
 - To control who can see what

- censorship
 - To suppress unwanted content
 - To control who can see what

As DNS is so central to using the Internet, it is often used as an instrument of

• Remember - DNS only translates a (domain) name to a number (IP address)

- As DNS is so central to using the In censorship
 - To suppress unwanted content
 - To control who can see what
- Remember DNS only translates a (domain) name to a number (IP address)
 - You can do that translation yourself locally if you know the address

- As DNS is so central to using the In censorship
 - To suppress unwanted content
 - To control who can see what
- Remember DNS only translates a (domain) name to a number (IP address)
 - You can do that translation yourself locally if you know the address
 - /etc/hosts still works or you can run your own resolver!

Conclusion

ConclusionDNS

Conclusion DNS

• DNS - Domain Name System - maps names to numbers

Conclusion DNS

- DNS Domain Name System maps names to numbers
 - Like <u>www.de-cix.net</u> to 2a02:c50:6209:702::8

- DNS Domain Name System maps names to numbers
 - Like <u>www.de-cix.net</u> to 2a02:c50:6209:702::8
- Domains are hierarchical and have a tree-like structure

- DNS Domain Name System maps names to numbers
 - Like <u>www.de-cix.net</u> to 2a02:c50:6209:702::8
- Domains are hierarchical and have a tree-like structure
 - On the top-level (below the root) domains like .net

- DNS Domain Name System maps names to numbers
 - Like <u>www.de-cix.net</u> to 2a02:c50:6209:702::8
- Domains are hierarchical and have a tree-like structure
 - On the top-level (below the root) domains like .net
 - On 2nd level de-cix so it is <u>de-cix.net</u>

- DNS Domain Name System maps names to numbers
 - Like <u>www.de-cix.net</u> to 2a02:c50:6209:702::8
- Domains are hierarchical and have a tree-like structure
 - On the top-level (below the root) domains like .net
 - On 2nd level de-cix so it is <u>de-cix.net</u>
 - On the 3rd level service names like www so it is <u>www.de-cix.net</u>

- DNS Domain Name System maps names to numbers
 - Like <u>www.de-cix.net</u> to 2a02:c50:6209:702::8
- Domains are hierarchical and have a tree-like structure
 - On the top-level (below the root) domains like .net
 - On 2nd level de-cix so it is <u>de-cix.net</u>
 - On the 3rd level service names like www so it is <u>www.de-cix.net</u>
- DNS can also reverse-map IP addresses back to names

- DNS Domain Name System maps names to numbers
 - Like <u>www.de-cix.net</u> to 2a02:c50:6209:702::8
- Domains are hierarchical and have a tree-like structure
 - On the top-level (below the root) domains like .net
 - On 2nd level de-cix so it is <u>de-cix.net</u>
 - On the 3rd level service names like www so it is <u>www.de-cix.net</u>
- DNS can also reverse-map IP addresses back to names
 - like mapping 46.31.121.136 to <u>webprod01.de-cix.net</u>

- DNS Domain Name System maps names to numbers
 - Like <u>www.de-cix.net</u> to 2a02:c50:6209:702::8
- Domains are hierarchical and have a tree-like structure
 - On the top-level (below the root) domains like .net
 - On 2nd level de-cix so it is <u>de-cix.net</u>
 - On the 3rd level service names like www so it is <u>www.de-cix.net</u>
- DNS can also reverse-map IP addresses back to names
 - like mapping 46.31.121.136 to <u>webprod01.de-cix.net</u>
 - DNS is a complex system which was extended a lot over time

<u>academy@de-cix.net</u>

Links and further reading

Links and further reading

- Internet protocol <u>https://en.wikipedia.org/wiki/Internet_Protocol</u>
- Protocol stack <u>https://en.wikipedia.org/wiki/Protocol_stack</u>
 - Transport Layer: <u>https://en.wikipedia.org/wiki/Transport_layer</u>
 - Datagram: <u>https://en.wikipedia.org/wiki/Datagram</u>
- IP Network Model: <u>https://en.wikipedia.org/wiki/Internet_protocol_suite</u>
- IPv4
 - IPv4 <u>https://en.wikipedia.org/wiki/IPv4</u>
- IPv6
 - IPv6 itself <u>https://en.wikipedia.org/wiki/IPv6</u>
 - IPv6 header <u>https://en.wikipedia.org/wiki/IPv6_packet</u>
- History of Internet and IP
 - Internet Hall of Fame <u>https://internethalloffame.org</u>
 - Defense Advanced Research Projects Agency (DARPA) https://www.darpa.mil
 - ARPANET <u>https://www.darpa.mil/about-us/timeline/arpanet</u>
 - The "Protocol Wars" <u>https://en.wikipedia.org/wiki/Protocol Wars</u>

Links and further reading

- Recommendations for DNS SOA values: <u>https://www.ripe.net/publications/docs/ripe-203</u>
- RFCs there are too many RFCs about DNS to list them all, here are a few highlights:
 - <u>RFC1034</u>: Domain Names Concepts and Facilities
 - <u>RFC1035</u>: Domain Names Implementation And Specification
 - a good overview of all DNS RFCs can be found here: <u>https://rfcs.io/dns</u>

Popular name servers and resolvers

- <u>Bind</u> old, but well maintained and with all features
- <u>Unbound</u> fast and lean
- <u>PowerDNS</u> for large installations

Popular public resolvers

This list may be always out of date...

- Overview: <u>https://en.wikipedia.org/wiki/Public_recursive_name_server</u>
- Cloudflare 1.1.1.1: <u>https://1.1.1.1</u>
- Google 8.8.8.8: https://developers.google.com/speed/public-dns/docs/using
- Quad9 9.9.9.9: <u>https://www.quad9.net</u>

Byte	0	1	2	3	Byte	0	1	2	3
0]]	D	Fla	Igs	0	ID = 0	x8a79	Flags: R0 000 0 AD	0 0 Recu 9=1 0
4	QDCOUNT quest	(Number of tions)	ANCOUNT ansv	(Number of vers)	2	QDCOUNT questio	(Number of ons): 1	ANCOUNT answe	(Numbe ers): 0
8	NSCOUNT authority	(Number of records)	ARCOUNT additiona	(Number of I records)	4	NSCOUNT authority r	(Number of records): 0	ARCOUNT additional	(Numbe records)

Byte	0	1	2	3	Byte	0	1	2	3
0	Length		QNAME		0	3	W	W	W
				4	6	d	е	_	
				8	С	i	X	3	
				0	12	n	е	t	0
	QT	QTYPE QCLASS		16	TYPE: A	(address)	CLASS: IN	l (Interne	

Query

Byte	0	1	2	3
0	0	Type: 41 (OPT)		UDP
	4096	0	Version 0	0
	0	0	0	

Query

Answer

Byte	0		2	3	
0	ID		Flags		
4	QDCOUNT ques	(Number of tions)	ANCOUNT (Number of answers)		
8	NSCOUNT authority	(Number of records)	ARCOUNT additiona	(Number of I records)	

Byte	0	1	2	3	
0	Length		QNAME		
				0	
	QT	YPE	QCL	ASS	

	Byte	0	1	2	3	
	0	Length		Name		
		TY	PE	CLASS		
		TTL				
		RDLe	ength	RD	ATA	
DE						

Byte	0	1	2		
0	ID = 0	x8a79	Flags: R1 0000 0 Re 1 AD=1 0		
4	QDCOUNT	(Number of	ANCOUNT	(Numb	
	questi	ons): 1	answ	ers): 1	
8	NSCOUNT	(Number of	ARCOUNT	(Numb	
	authority r	records): 0	additional	records	

Byte	0	1	2	
0c	3	W	W	
10	6	d	е	
14	С	i	X	
18	n	е	t	
1c	TYPE: A	(address)	CLASS: IN	l (Interr

Byte	0	1	2	
20	0xc0 '0x0c		TYPE: A	(addres
24	CLASS: IN	V (Internet)	T	ΓL
28	TTL (3246	seconds)	RDLen	gth = 4
2c	46	31	121	1:

Answer

Byte	0	1	2	3
0	0	Type: 4	1 (OPT)	UDP Size
	4096	0	Version 0	0
	0	0	0	

DNS - How does it work?

Cache:

Attacker