Networking Basics 04e - PING considered harmful (for network monitoring)

Wolfgang Tremmel academy@de-cix.net

人口和某些保護的時

E INCOME AND

Where networks meet

DECIX

www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

Networking Basics DE-CIX Academy

- 01 Networks, Packets, and Protocols
- 02 Ethernet, 02a VLANs, 02b QinQ
- 03 IP, 03a Routing, 03b Global routing
- 04a UDP, 04b TCP, 04c ICMP, 04d Traceroute
- 04e Ping considered harmful (for network monitoring)
- 05 Uni-, Broad-, Multi-, and Anycast
- 06a Domain Name System (DNS)
- 07a SMTP, 07b HTTP

Recently in customer service.... Based on a true story

We constantly ping their peering router. 3% of the pings get no reply

Strangely enough our BGP sessions are fine

About PING

About PING Most of you might have done this before....

- You ping a system to check if it is "alive"
 - "Alive" in this case means reachable over the Internet
- So *ping* must use a mechanism to send a packet
 - and to process a reply
- The packets sent and received are **ICMP** messages
- called "Echo Request" and "Echo Reply" DECIX

• • •	ubuntu@ip-10-0-4-182:	~
er01:~ (-bash) 🚊 #1	wtremmel (-bash) #2	4-182: ~ (-bash)

7.3	2
#З	+
et	

Internet Model ICMP - Internet Control Message Protocol

- ICMP uses IP for transport
 - So it is "above" the Internet layer
- But it does not have anything "on top" of it
- This is true for both IPv4 and IPv6

ICMP Echo Request For IPv6

- ICMP Type for Echo Request in IPv6 is 128
- Code is always zero
- Checksum covers the ICMP part and (in IPv6) only parts of the IPv6 header)
- Identifier is a 16bit number (may be zero) to match replies to requests
- Sequence number is a 16 bit counter also to match replies to request.
 - Usually counts up for each ping

Data can be any data to make the packet larger

3		
) Limit		
nber		

ICMP Echo Reply For IPv6

- ICMP Type for Echo Reply in IPv6 is 129
- Code is always zero
- Checksum calculated the same way as in Echo Request
- Identifier is a 16bit number (may be zero) copied from Echo Request
- Sequence number is a 16 bit counter copied from Echo Request.

3		
) Limit		
nber		

Processing a PING Echo Request

Byte	0		2	3	
0	Version Header Length	DSCP / ECN	Total L 2065	ength 5535	
4	Identifica	Identification		Flags / Fragment Off	
8	Time To Live	Protocol	Header Ch	hecksum	
12	Source IPv4 Add	ress:	192.0.2.1		
16	Destination IPv4	Address:	198.51.100.	34	
40	Type = 8	Code = 0	Checksum		
44	Identifier	0	Sequence Nu	umber 2	
	Data	Some Data	8		

Processing a PING Echo Request

Byte	0		2	3
0	Version Header Length	DSCP / ECN	Total L 2065	ength 5535
4	Identifica	ation	Flags / Fragment Offset	
8	Time To Live	Protocol	Header Cl	necksum
12	Source IPv4 Add	ress:	192.0.2.1	
16	Destination IPv4	Address:	198.51.100.34	
40	Type = 8	Code = 0	Checksum	
44	Identifier	0	Sequence Nu	umber 22
	Data	Some Data	3	

Echo Reply

Byte	0	1	2	
0	Version Header Length	DSCP / ECN	Total L 2065	ength 5535
4	Identifica	ation	Flags / Fragr	nent (
8	Time To Live	Protocol	Header Ch	necks
12	Source IPv4 Add	ress:		
16	Destination IPv4	Address:		
40	Type = 0	Code = 0	Checksum	
44	Identifier		Sequence Nu	ımber
•••	Data			

Processing a PING

- Replying to a Ping is not "for free"
- It costs CPU cycles
- The reply packet needs to be generated
 - and the entries filled
 - with information from the request
- All this has to be done by the CPU

Echo Reply

	Byte	0	1	2	
•	0	Version Header Length	DSCP / ECN	Total Lo 2065	ength 5535
d	4	Identifica	ation	Flags / Fragr	nent
	8	Time To Live	Protocol	Header Ch	necks
	12	Source IPv4 Add	ress:	198.51.100.	34
	16	Destination IPv4	Address:	192.0.2.1	
	40	Type = 0	Code = 0	Checksum	
	44	Identifier 0		Sequence Nu	umbei
		Data	Some Data	a	

PINGing a router

Protecting the Router By limiting CPU access

- A few pings are not a problem
- But if millions and millions of pings need to be processed, this can overload the CPU
- So a limiting filter or *policer* may regulate CPU access
- If a router has no limiter, the CPU is the limit, pings might still be dropped
- Dropped pings *appear* like packet loss

Conclusion

Conclusion PING towards routers

- ICMP packets to a router are processed by the routers CPU
- The access to the CPU may be limited by a policer
- Policed ping request appear like packet loss (but they are not)
 - Same if the CPU is overloaded
- You should not flood-ping other entities routers without their consent
 - Doing so might be seen as a DOS attack

Layer	Na
4	ICI
3	Inte
2	Li
1	Phy

But... how can I monitor?

Using PING for monitoring

- Wait did you not say ping is bad?
- I said massive ping is bad
- <u>Smokeping</u> per default sends 20 pings every 5 minutes which is IMHO perfectly ok
- Results are shown in a nice graphic

Last 360 Days from lancre

Last 30 Hours from lancre

iPerf3 **Performance testing**

- If you want to test performance with a lot of packets
- Never target a router
- Ask the network you want to test with for starting *iPerf3* on a linux server
- And test against this server
- <u>iPerf3</u> is an open source performance tester $\mathbf{D} \in \mathbf{C} \mathbf{I} \mathbf{X}$

Client:

Client:home wtremmel\$ iperf -V -c server.example.com

Client connecting to server.example.com, TCP port 5001 TCP window size: 129 KByte (default)

6] local 198.51.100.1 port 63951 connected with 192.0.2.1 port 5001 ID] Interval Transfer Bandwidth 6] 0.0-10.0 sec 719 MBytes 603 Mbits/sec

Server:

root@example /var/log # iperf -s

Server listening on TCP port 5001 TCP window size: 128 KByte (default)

1] local 192.0.2.1 port 5001 connected with 198.51.100.1 port 28949 [ID] Interval Transfer Bandwidth 1] 0.0000-10.0255 sec 835 MBytes 699 Mbits/sec 2] local 192.0.2.1 port 5001 connected with 198.51.100.1 port 29172 ID] Interval Transfer Bandwidth 2] 0.0000-10.0238 sec 719 MBytes 601 Mbits/sec

<u>academy@de-cix.net</u>

Links and further reading

Links and further reading

- Internet protocol <u>https://en.wikipedia.org/wiki/Internet_Protocol</u>
- Protocol stack <u>https://en.wikipedia.org/wiki/Protocol_stack</u>
 - Transport Layer: <u>https://en.wikipedia.org/wiki/Transport_layer</u>
 - Datagram: <u>https://en.wikipedia.org/wiki/Datagram</u>
- IP Network Model: <u>https://en.wikipedia.org/wiki/Internet_protocol_suite</u>
- IPv4
 - IPv4 <u>https://en.wikipedia.org/wiki/IPv4</u>
- IPv6
 - IPv6 itself <u>https://en.wikipedia.org/wiki/IPv6</u>
 - IPv6 header <u>https://en.wikipedia.org/wiki/IPv6_packet</u>
- History of Internet and IP
 - Internet Hall of Fame <u>https://internethalloffame.org</u>
 - Defense Advanced Research Projects Agency (DARPA) https://www.darpa.mil
 - ARPANET <u>https://www.darpa.mil/about-us/timeline/arpanet</u>
 - The "Protocol Wars" <u>https://en.wikipedia.org/wiki/Protocol Wars</u>

Links and further reading

- ICMPv4:
 - Wikipedia: <u>https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol</u>
 - Definition in <u>RFC792</u>
 - Depreciation of some ICMP types: <u>RFC6918</u>
- ICMPv6:
 - Wikipedia: <u>https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol_for_IPv6</u>
 - Definition in <u>RFC4443</u> (first definition, now obsolete, was in <u>RFC1885</u>)
 - Echo Request and Echo Reply: <u>https://www.rfc-editor.org/rfc/rfc4443#section-4</u>
 - IANA list of ICMPv6 types and codes: <u>https://www.iana.org/assignments/icmpv6-parameters/icmpv6-</u> parameters.xhtml
- Smokeping: <u>https://oss.oetiker.ch/smokeping/</u>
- iPerf3: <u>https://software.es.net/iperf/</u>

• IANA list of ICMP types and codes: <u>http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml</u>

Internet RFCs (Standards)

- There are too many RFCs dealing with IPv4 and IPv6 to be listed here
- Just go to <u>https://tools.ietf.org/html/</u> and use the search field
- How does something become RFC? <u>https://www.rfc-editor.org/pubprocess/</u>
- The <u>IETF</u> Internet Engineering Task Force

