

Networking Basics
04b - Transmission Control Protocol (TCP)

Wolfgang Tremmel
academy@de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany
Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

mailto:academy@de-cix.net

Networking Basics
DE-CIX Academy

01 - Networks, Packets, and Protocols

02 - Ethernet, 02a - VLANs, 02b - QinQ

03 - IP, 03a - Routing, 03b - Global routing

04a - User Datagram Protocol (UDP)

04b - Transmission Control Protocol (TCP)

04c - ICMP

05 - Uni-, Broad-, Multi-, and Anycast

06a - Domain Name System (DNS)

IP / Internet Layer

• Data units are called "Packets"

• Provides source to destination transport

• For this we need addresses

• Examples:

• IPv4

• IPv6

Internet Model
Layer Name

5 Application

4 Transport

3 Internet

2 Link

1 Physical

Transport Layer

• May provide flow control, reliability, congestion
avoidance

• Also may contain information about the next layer up

• Examples:

• UDP (none of the above)

• (flow control, reliability, congestion avoidance)

Internet Model
Layer Name

5 Application

4 Transport

3 Internet

2 Link

1 Physical

TCP

- Transmission Control Protocol
What does it do?

• Transports data - any kind of data

• Makes sure everything arrives at destination unchanged

• And lets the sender know that it has arrived

• Takes care of speed of delivery - by adjusting sending rate

• TCP is complicated

• Oversimplify? Or leave stuff out?

TCP

Transport data: How does it do that?

• Establishing connections

• Not one - but two connections

• Sender -> Receiver and Receiver -> Sender

• Each data received is acknowledged to the other side

• So each side knows what the other side has already received

• If anything gets lost, it is retransmitted (but this costs time!)

- Transmission Control ProtocolTCP

Packets inside packets - headers after headers

• Encapsulation is like Russian
dolls

• IP Packets have a payload

• This payload is usually UDP or
TCP (there are others as well)

• So we have a TCP packet inside
an IP packet

Encapsulation

Attribution: Fanghong. derivative work: Greyhood

https://commons.wikimedia.org/wiki/File:Matryoshka_transparent.png

"Legacy" IP

• Starts with version and length

• Total length of packet

• Important: Time to live (TTL)

• Protocol: Type of payload

• TCP = 6, UDP = 17

• Source / Destination address 32 bits

• Options (optional)

IPv4 Header

Byte 0 1 2 3

0
Version | Header

Length

always 4 | 5..15
DSCP / ECN Total Length

20..65535

4 Identification Flags / Fragment Offset
8 Time To Live Protocol Header Checksum
12 Source IPv4 Address

16 Destination IPv4 Address
20

Optional (if HeaderLength > 5)24
28
32

Modern IP

• Starts with version and some labels

• Payload length in bytes (0-65535)

• Next Header - you can chain more
headers

• replaces protocol field, same
values

• so this now points to the TCP
header

IPv6 Header
Byte 0 1 2 3

0 Version = 6 / Traffic Class / Flow Label

4 Payload Length

in bytes

Next
Header Hop Limit

8

Source IPv6 Address
12
16
20
24

Destination IPv6 Address
28
32
36

TCP, UDP, and more

• We already talked about UDP

• TCP is way more complex

• So, it is getting complicated

• Lets have a look at the header

Next header: Transport layer header

Byte 0 1 2 3

0 Version = 6 / Traffic Class / Flow Label

4 Payload Length

in bytes

Next
Header Hop Limit

8

Source IPv6 Address
12
16
20
24

Destination IPv6 Address
28
32
36

• Source and destination port

• 32 bit each, both mandatory

• Sequence number

• Starts pseudo-random

• Acknowledge number

• To tell the sender what is expected
next

• Window size

• Amount of data the sender can send
without ACK from receiver

TCP Header
Byte 0 1 2 3

0 Source Port Destination Port

4 Sequence number

Acknowledge number

Data Offset (4 Bit)

Reserved (3 Bit) 

Flags (9 Bit)
Window Size

Checksum Urgent Pointer

• Checksum

• Parts of IP-header, TCP header,
payload

• Urgent pointer

• Mark part of the payload as
urgent, not widely used.

TCP Header
Byte 0 1 2 3

0 Source Port Destination Port

4 Sequence number

Acknowledge number

Data Offset (4 Bit)

Reserved (3 Bit) 

Flags (9 Bit)
Window Size

Checksum Urgent Pointer

• 9 Flags in the header
TCP Header Flags

Byte 0 1 2 3

0 Source Port Destination Port

4 Sequence number

Acknowledge number

Data Offset (4 Bit)

Reserved (3 Bit) 

Flags (9 Bit)
Window Size

Checksum Urgent Pointer

Byte 0 1

Data Offset (4 Bit)

Reserved (3 Bit) 

Flags (9 Bit)

• SYN - Synchronize sequence numbers. Only at start of connection

• ACK - content of Acknowledgement Number field is valid. Should
be set in all packets after initial handshake

• PSH - Tells TCP to push buffered data up to Application Layer

• FIN - Last packet from sender when closing connection

• RST - immediate reset / shutdown of connection

TCP Header Flags - Important ones

Byte 0 1
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Data offset Reserved

0 0 0 NS CWR ECE URG ACK PSH RST SYN FIN

• Flags for Explicit Congestion Notification - RFC3168

• NS - ECN-Nonce - RFC3540

• CWR - Congestion Window Reduced

• ECE - ECN-Echo

• URG - Urgent data pointer field is significant

TCP Header Flags - the rest

Byte 0 1
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Data offset Reserved

0 0 0 NS CWR ECE URG ACK PSH RST SYN FIN

TCP Options
Up to 40 bytes of optional header

• Each option has three fields

• Option kind

• Option length

• Option data

• Please read the documentation about optional TCP header fields

Features of TCP

Do you remember this from UDP?

1.

2. Connections

3. Reliability

4. Flow control

5. Congestion avoidance

Features of TCP

Port numbers

?
 1 2 3 4 5

6 7 8 9 10

11 12 13 14

TCP

Destination port: 7

Port numbers

In reality...

• Of course we have not a building

• We have a computer system

• But we have port numbers

• Behind each port sits a piece of
software

• On some systems this
software is called a "daemon"

Port numbers
root@lancre:/tmp# netstat -an -t | head -40
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:45097 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:873 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:587 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:6379 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:27117 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:110 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:59278 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:9102 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:783 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:143 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:9103 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:2223 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:34065 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:52373 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

1. Port numbers

2.

3. Reliability

4. Flow control

5. Congestion avoidance

Features of TCP

Connections

Establishing
Not so secret handshake

Connections

Establishing Connection
Not so secret handshake

SYN

SYN ACK

 ACK

SYN

SYN ACK

 ACK

1. Port numbers

2. Connections

3. Reliability

4. Flow control

5. Congestion avoidance

Features of TCP ?

Reliable Data Transfer

No need to wait for each packet

Sender Receiver

TCP
Data transfer

• Ordered transfer - receiver can re-arrange out-of-order packets

• This is what the sequence number is for

• Retransmission of lost packets

• This is what the acknowledgement number is for

TCP Data Transfer
Sequence number and acknowledgement number

• Initial sequence number is random

• It notes the byte number of the first payload byte

• Acknowledgements are sent by the receiver

• Acknowledgement Number = "I have received data up to this sequence
number"

• In case of packet loss, the Acknowledgement Number is not increased

TCP Data Transfer
Acknowledgement of received data

Seq: 0001

10 Bytes
of Data

Seq: 0011

20 Bytes
of Data

Seq: 0031

10 Bytes
of Data

 ACK
ACK: 0030

 ACK
ACK: 0040

TCP Data Transfer
Handling of packet loss

Seq: 0001

10 Bytes
of Data

Seq: 0011

20 Bytes
of Data

Seq: 0031

10 Bytes
of Data

 ACK
ACK: 0010

 ACK
ACK: 0010

1. Port numbers

2. Connections

3. Reliability

4.

5. Congestion avoidance

Features of TCP

Flow control

Flow control
How "fast senders" can deal with "slow receivers"

• Flow control is about end-to-end communication

• The sender should not "overload" the receiver

• Remember "window size" in the TCP header?

• "Amount of data the sender can send without ACK from receiver"

• So if receivers tends to get overloaded, it simply reduced the window size

• If sender has sent <window size> data, it stops until it received an ACK from
the receiver

Flow control
When window size was designed, networks were way slower

• Original window size field is 16 bit - that means 64kByte of data

• This is too small for todays (fast) networks

• Solution - see RFC7323 (first introduced 1988 in RFC1072)

• "Window Scale" - uses a TCP option field when setting up a connection

• Possible values: 0 (no scale) - 14

• Typical value on Linux: 1

• A scale of n means: multiply window value with 2n

https://tools.ietf.org/html/rfc7323
https://tools.ietf.org/html/rfc1072

1. Port numbers

2. Connections

3. Reliability

4. Flow control

5.

Features of TCP

Source: Public Domain

https://commons.wikimedia.org/wiki/File:Zeichen_124_-_Stau,_StVO_1992.svg

Congestion control

Congestion control
The bottleneck between sender and receiver

• Goal: Do not send more than the network can transport

• TCP uses four algorithms for that:

• Slow start

• Congestion avoidance

• Fast retransmit

• Fast recovery

Source: Public Domain

https://commons.wikimedia.org/wiki/File:Zeichen_124_-_Stau,_StVO_1992.svg

"Slow Start" & "Congestion Avoidance"
...because a sender does not know anything about the network

• Two algorithms to limit sender of data

• Sender keeps variables (per connection):

• Congestion Window - limit of data that can be sent before receiving an
ACK

• Slow Start Threshold - switch from "Slow Start" to "Congestion
Avoidance"

• Slow Start: Used at beginning or after packet loss

"Slow Start"
At the beginning of a connection or after packet loss

• Initial value of Congestion Window is set depending on maximum packet
size of sender

• Usually its 2-4 segments (packets)

• Once ACKs are received "Congestion Window" is increased

• Each ACK increases Congestion Window

• For details, see RFC5681

• Once Congestion Window > Slow Start Threshold Congestion Avoidance
takes over

https://tools.ietf.org/html/rfc5681#section-3.1

"Congestion Avoidance"
Do not send more than the network can transport

• Increase Congestion Window by one segment per each round-trip-time

• This is the reason low-latency is so important

• This continues until congestion is detected

Data

ACK

ACK
ACK

ACK

Data Data
Data

"Fast Retransmit"
Try again Sam...

• When a receiver gets a packet out-of-order it sends a "duplicate ACK"
immediately

• So the sender knows something might have been lost (or re-ordered?)

• If three duplicate ACKs come back to the sender, Fast Retransmit kicks in

• Sender re-sends missing data immediately (without waiting for the
retransmission timer)

• Then Fast Recovery takes over

"Fast Recovery"
Getting things back on track

• New data is being sent again now

• At a slower speed

• Runs until non-duplicate ACK arrives

• Then "Congestion Avoidance" takes over again

Is that all?

 No....

TCP has many more extensions
Some overview...

• Selective ACK (SACK) - RFC2018 - allows ACKs of single segments

• There are several security extensions, like defense against SYN flooding
(RFC4987)

• TCP Authentication Option allows cryptographic signing of TCP segments
(RFC5925)

• See RFC7414 for all TCP-related documents

https://tools.ietf.org/html/rfc2018
https://tools.ietf.org/html/rfc4987
https://tools.ietf.org/html/rfc5925
https://tools.ietf.org/html/rfc7414

What about security?

Remember "establishing a connection"?
What if the handshake is incomplete?

SYN
Faked IP
Source

SYN ACK

Consumes
resources

Remeber "establishing a connection"?
What if the handshake is incomplete?

SYN
Faked IP
Source

Consumes
resources

SYN
Faked IP
SourceSYN

Faked IP
SourceSYN

Faked IP
SourceSYN

Faked IP
SourceSYN

Faked IP
SourceSYN

Faked IP
SourceSYN

Faked IP
SourceSYN

Faked IP
SourceSYN

Faked IP
Source

This is the "TCP SYN Flood" attack
Overloading the receiver

• Send lots of TCP SYN packets (with faked IP source addresses)

• Each received SYN triggers a SYN/ACK and consumes resources (memory
etc.)

• Until the connection attempt expires

• So if enough SYN packets are received, the receiver's tables fill up and no
new (real) connections can be accepted. The receiver appears offline.

• Several mitigation strategies exist - see RFC4987

Guessing the Sequence Number
Disrupting connections

• To immediately shut down a TCP connection, the RST (reset) flag can be used

• A RST is only valid if it's sequence number is in the window

• So the attacker must know (or guess) the sequence number, port numbers
etc. correctly and fake the IP source address.

• RFC4953 describes the attack and counter measures

TCP - what it is used for

TCP
What is it used for?

• The list is too long

• Most application protocols use TCP

• HTTP - browsing the web

• SMTP - transporting email

• SSH - secure log in to remote systems

• ... and many many more

Conclusion

Conclusion
TCP - Transmission Control Protocol

• TCP is a connection oriented protocol on the transport layer

• It uses sophisticated algorithms for...

• ...reliable data transfer

• by end-to-end acknowledgement of data transferred

• ...efficient use of available bandwidth

• by increasing sending rate step by step

• ...fairness to other connections

• by not overcrowding other TCP connections

Layer Name

5 Application

4 Transport

3 Internet

2 Link

1 Physical

Thank you!
academy@de-cix.net

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany
Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

mailto:academy@de-cix.net
https://lists.de-cix.net/wws/subscribe/academy

Links and further reading

Links and further reading
• Internet protocol - https://en.wikipedia.org/wiki/Internet_Protocol
• Protocol stack - https://en.wikipedia.org/wiki/Protocol_stack

• Transport Layer: https://en.wikipedia.org/wiki/Transport_layer
• Datagram: https://en.wikipedia.org/wiki/Datagram

• IP Network Model: https://en.wikipedia.org/wiki/Internet_protocol_suite
• IPv4

• IPv4 - https://en.wikipedia.org/wiki/IPv4
• IPv6

• IPv6 itself - https://en.wikipedia.org/wiki/IPv6
• IPv6 header - https://en.wikipedia.org/wiki/IPv6_packet

• History of Internet and IP
• Internet Hall of Fame - https://internethalloffame.org
• Defense Advanced Research Projects Agency (DARPA) - https://www.darpa.mil
• ARPANET - https://www.darpa.mil/about-us/timeline/arpanet
• The "Protocol Wars" - https://en.wikipedia.org/wiki/Protocol_Wars

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy

https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Protocol_stack
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/IPv6_packet
https://internethalloffame.org
https://www.darpa.mil
https://www.darpa.mil/about-us/timeline/arpanet
https://en.wikipedia.org/wiki/Protocol_Wars
https://lists.de-cix.net/wws/subscribe/academy

Internet RFCs (Standards)
• There are too many RFCs dealing with IPv4 and IPv6 to be listed here

• Just go to https://tools.ietf.org/html/ and use the search field

• How does something become RFC? https://www.rfc-editor.org/pubprocess/

• The IETF - Internet Engineering Task Force

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy

https://tools.ietf.org/html/
https://www.rfc-editor.org/pubprocess/
https://www.ietf.org
https://lists.de-cix.net/wws/subscribe/academy

Internet RFCs and other links about TCP
• TCP on Wikipedia:

• https://en.wikipedia.org/wiki/Transmission_Control_Protocol
• TCP Window Scale Option: https://en.wikipedia.org/wiki/TCP_window_scale_option
• TCP Congestion Control: https://en.wikipedia.org/wiki/TCP_congestion_control

• Presentations and interesting links about TCP:
• A great presentation about TCP: https://www.potaroo.net/presentations/2019-09-05-bbr.pdf

• Notable RFCs about TCP:
• Initial definition (1974): RFC675
• Roadmap of documents (start here!): RFC7414
• Initial Sequence Number calculation: RFC6528
• Window size RFCs:

• RFC7323: TCP Extensions for High Performance
• Congestion control RFCs:

• TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms: RFC2001 (obsolete)
• TCP Congestion Control: RFC5681

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/TCP_window_scale_option
https://en.wikipedia.org/wiki/TCP_congestion_control
https://www.potaroo.net/presentations/2019-09-05-bbr.pdf
https://tools.ietf.org/html/rfc675
https://tools.ietf.org/html/rfc7414
https://tools.ietf.org/html/rfc6528
https://tools.ietf.org/html/rfc7323
https://tools.ietf.org/html/rfc2001
https://tools.ietf.org/html/rfc5681
https://lists.de-cix.net/wws/subscribe/academy

