Introduction to Networks

Ethernet

Wolfgang Tremmel
academy@de-cix.net
Ethernet
A Modern Ethernet Device
Nokia 7950

• As used by DE-CIX
• Connects 100s of devices
• using optical interfaces
• with speeds up to 100Gbps
Another Modern Ethernet Device

Fritzbox

- as used at home
- connects 4 devices directly
- using copper interfaces
- with speeds up to 1Gbps
So why does the symbolic drawing of Ethernet look like this?
1971

It began in Hawaii: ALOHA-Net
ALOHA-Net
University of Hawaii, 1971

• Radio based network
• To interconnect sites
• Simple principle:
 • If you have data to send, send it
 • If you receive something while sending, stop and try again later
1973

Robert Metcalfe - Xerox PARC
Ethernet
Xerox PARC, 1973

• Instead of radio, uses a coax cable
 • For higher bandwidth
 • And more reliability
• Inspired by ALOHAnet
• Standardized in 1980
 • Ethernet II in 1982, standardized as IEEE 802.3 in 1983

Attribution: Coolcaesar at the English language Wikipedia
https://commons.wikimedia.org/wiki/File:Parcentrance.jpg
10BASE5
10 Mbit/s Ethernet

- 10 - Mbit/s
- BASE - uses baseband modulation
- 5 - 500m max. segment length
- Hardware:
 - 1cm thick coax cable
 - "Vampire-Tap" Transceivers
10Base5 Ethernet
Remember the drawing
10Base5 Ethernet
Remember the drawing

50Ω Coax Cable
10Base5 Ethernet
Remember the drawing

50Ω Coax Cable

Author: Alistair1978 (based on copyright claims). / CC BY-SA (https://creativecommons.org/licenses/by-sa/2.5) https://commons.wikimedia.org/wiki/File:ThicknetTransceiver.jpg
10BASE2
still only 10 Mbit/s Ethernet

• Hardware:
 • thin coax cable
 • BNC-"T"-connectors
 • Up to 200m total length
 • "Cheapernet"
 • mid to late 1980s
10Base-T
still only 10 Mbit/s Ethernet

- Hardware:
 - two pairs of twisted copper wires
 - 8P8C (RJ45) plastic connector
- Since 1988
- Needs an active component (hub or switch) to interconnect
Competing standards
Token Ring

1984 - 1990s

- Developed by IBM
- 4Mbit/s, later 16Mbit/s
- Deterministic access
- Needs central Multistation Access Unit
- More complex than Ethernet
- More expensive than Ethernet
FDDI
late 1980s - 1990s

• Fiber Distributed Data Interface
• Optical network
• 100Mbit/s speed, up to 200km size
• Frame-size of 4352 bytes
• double ring topology
• made obsolete by GigabitEthernet
Back to Ethernet
Ethernet is a broadcast network where all devices are connected to a shared medium.
Broadcast network

One is sending, everybody is receiving

• All stations share one medium
• Only one station at a time can send data
• If two stations start sending at the same time, a collision occurs
 • Both stop sending, wait for a random time, then retry
 • This was one of the main criticisms (no guaranteed delivery)
Broadcast network

One is sending, everybody is receiving

- Everybody is receiving everything
- How to avoid overload / unnecessary processing of data?
 - Each station has a unique 48-Bit address
 - Receivers address is at the beginning of each frame
 - And can be processed by the network card
 - Only frames with matching address or broadcast frames are forwarded to the CPU
Ethernet Frame Structure

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SF D</th>
<th>Destination MAC Address</th>
<th>Source MAC Address</th>
<th>Ethertype</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101010</td>
<td>10101010</td>
<td>48 Bits 6 Octets</td>
<td>48 Bits 6 Octets</td>
<td>16 Bits 2 Octets</td>
<td>46 - 1500 Octets</td>
<td>32 Bits 4 Octets</td>
</tr>
</tbody>
</table>
Ethernet

Frame Structure

- Preamble - 56 bits of 10101010....
- Start of frame marker - 8 bits: 10101011
- Destination MAC address
- Source MAC address
- EtherType (or length)
- Payload
- 32 bit checksum

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SF D</th>
<th>Destination MAC Address</th>
<th>Source MAC Address</th>
<th>Ethertype</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101010</td>
<td>10101010101010101010101010101010</td>
<td>48 Bits 6 Octets</td>
<td>48 Bits 6 Octets</td>
<td>16 Bits 2 Octets</td>
<td>46 - 1500 Octets</td>
<td>32 Bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 Octets</td>
</tr>
</tbody>
</table>
Ethernet Addressing

- 48 Bit address - 6 octets
- 281 trillion possible addresses
- Managed by IEEE
 - You can purchase blocks of addresses
- Notation examples:
 - 00:26:b0:d8:3d:8a
 - 0026.b0d8.3d8a
 - 00-26-b0-d8-3c-8a

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SF</th>
<th>D</th>
<th>Destination MAC Address</th>
<th>Source MAC Address</th>
<th>Ethertype</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101010</td>
<td>10101010</td>
<td>10101010</td>
<td>10101011</td>
<td>10101010</td>
<td>10101011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 48 Bits</td>
<td>- 6 Octets</td>
<td>- 48 Bits</td>
<td>- 6 Octets</td>
<td>- 16 Bits</td>
<td>- 2 Octets</td>
<td>- 46 - 1500 Octets</td>
<td>- 32 Bits</td>
</tr>
</tbody>
</table>
Ethernet Addressing

- Two bits in first octect have special meaning
- one for unicast vs. multicast
- one for local vs. globally unique addresses
- unique: usually "burned" into the hardware by manufacturer

Ethernet Frame Structure

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SF</th>
<th>D</th>
<th>Source MAC Address</th>
<th>Ethertype</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101010</td>
<td>10101010</td>
<td>10101010</td>
<td>10101010</td>
<td>10101011</td>
<td>48 Bits (6 Octets)</td>
<td>16 Bits (2 Octets)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>Initial frame delimiter</td>
<td>48 Bits (6 Octets)</td>
</tr>
<tr>
<td>Start Frame Delimiter (SFD)</td>
<td>Frame control field</td>
<td>16 Bits (2 Octets)</td>
</tr>
<tr>
<td>Destination MAC Address</td>
<td>Destination address</td>
<td>48 Bits (6 Octets)</td>
</tr>
<tr>
<td>Source MAC Address</td>
<td>Source address</td>
<td>48 Bits (6 Octets)</td>
</tr>
<tr>
<td>Ethertype</td>
<td>Protocol type</td>
<td>16 Bits (2 Octets)</td>
</tr>
<tr>
<td>Payload</td>
<td>Data to be transmitted</td>
<td>46 - 1500 Octets</td>
</tr>
<tr>
<td>Checksum</td>
<td>Frame check sequence</td>
<td>32 Bits (4 Octets)</td>
</tr>
</tbody>
</table>
Ethernet

Special Addresses

- **FF:FF:FF:FF:FF:FF**
 - The *broadcast* address
- Received by all nodes

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SF D</th>
<th>Destination MAC Address</th>
<th>Source MAC Address</th>
<th>Ethertype</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td></td>
<td></td>
<td>48 Bits 6 Octets</td>
<td>16 Bits 2 Octets</td>
<td>46 - 1500 Octets</td>
<td>32 Bits 4 Octets</td>
</tr>
</tbody>
</table>
Ethernet

Ethertype

- Was once used to indicate size of payload
- Using values up to 1500
- → Ethertype values start at 1536
- Some well-known values:
 - 0x0800: IPv4
 - 0x86dd: IPv6
 - 0x0806: ARP
 - 0x8100: VLAN Tagged

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SF D</th>
<th>Destination MAC Address</th>
<th>Source MAC Address</th>
<th>Ethertype</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>01010101</td>
<td>01010101</td>
<td>01010101</td>
<td>01010101</td>
<td>01010111</td>
<td>48 Bits</td>
<td>48 Bits</td>
</tr>
</tbody>
</table>
Ethernet Today
Ethernet connections
In data centers

- Usually optical fibres are used
- Various types exist (single mode, multi mode)
- Speeds are 1 GBit/s, 10 GBit/s or 100 GBit/s
- Connections are between a switch and an end device
Ethernet at home

10Base-T

- Only wire-based connections are in use
- Speeds are 100Mbit/s or 1Gbit/s
- With a switch as a center
- Wireless Ethernet - WIFI is most common
10Base-T

- 10Base-T (twisted pair) requires a central device
- To replace the yellow coax cable
- Early devices: a *hub*
 - Function: What is received on one port is broadcasted out on all other ports
 - Just like the yellow coax cable

Attribution: Zac67
https://commons.wikimedia.org/wiki/File:HP_EtherTwist_Hub8.jpg
Ethernet Switch

Ethernet today

• Instead of a hub, a switch is common today

• Advantage:
 • a switch learns which devices are connected to which port
 • and only sends frames on ports they are destined to
 • fallback: unknown destinations are still broadcasted on all ports

Attribution: Wolfgang Tremmel
But...

Ethernet still...

- ...usually has a max payload size of 1500 octets
 - "jumbo frames" with 9000 octets exist, but are not commonly used
- ...uses 48-bit addresses
- ...is a broadcast medium.
 - but today *switches* are used and connections are point-to-point
Conclusion
Please remember....
Facts about Ethernet

• Ethernet is a broadcast network
• It uses 48-Bit addresses
 • Which are globally unique
• Ethernet frames have usually max. 1500 octets payload
• Today *switches* interconnect devices
Thank you!

academy@de-cix.net

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy
Links used in the presentation
History of Ethernet

- ALOHAnet
- Robert Metcalfe and Xerox PARC
- Ethernet
 - Wikipedia entry for Ethernet
 - IEEE Standard for Ethernet
- Various types of Ethernet
 - 10Base5
 - 10Base2
 - 10Base-T
- more speed
 - FastEthernet - 100Mbit/s
 - GigabitEthernet - 1000Mbit/s / 1GBit/s
 - 10 Gigabit Ethernet - 10GBit/s
 - 100 Gigabit Ethernet (and 40 Gigabit Ethernet)

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy
Other protocols
Now mostly obsolete

- Token Ring
- FDDI
- Arcnet
- Econet
- AppleTalk

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy
Ethernet hardware
Then and now

• Historical hardware
 • Vampire tap for 10Base5
 • Attachment Unit Interface
 • Coax cable and BNC-Connector for 10Base2
 • Ethernet Hub for 10Base-T

• Currently used hardware
 • Twisted pair cables: Cat5, Cat6, RJ45 connector
 • Optical fibres: Single-mode and multi-mode
 • Ethernet switch

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy
Standards

• IEEE standards
 • 802.3-2018 current standard, also [here](#)
 • IEEE 802 committee [website](#)

• Registered information:
 Ethertype list at IANA, Public register at IEEE

• Some Internet RFCs regarding Ethernet
 • IP over Ethernet: RFC894, RFC895
 • IPv6 over Ethernet: RFC1972, RFC2464

Software

• [Wireshark](#)

• [TCPDump](#)

Interested in more webinars? Please subscribe to our mailing list at https://lists.de-cix.net/wws/subscribe/academy