Networking Basics 04c - Internet Control Message Protocol (ICMP)

Wolfgang Tremmel academy@de-cix.net

目前用具有自己的。

Where networks meet

DECIX

www.de-cix.net

DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | sales@de-cix.net | www.de-cix.net

Networking Basics DE-CIX Academy

- 01 Networks, Packets, and Protocols
- 02 Ethernet, 02a VLANs, 02b QinQ
- 03 IP, 03a Routing, 03b Global routing
- 04a User Datagram Protocol (UDP)
- 04b Transmission Control Protocol (TCP)
- 04c Internet Control Message Protocol (ICMP)
- 05 Uni-, Broad-, Multi-, and Anycast
- 06a Domain Name System (DNS)

Internet Model IP / Internet Layer

- Data units are called "Packets"
- Provides source to destination transport
 - For this we need addresses
- Examples:
 - IPv4
 - IPv6

	Layer	Name
	5	Application
	4	Transport
	3	Internet
-	2	Link
	1	Physical

Internet Model **Transport Layer**

- May provide flow control, reliability, congestion avoidance
- Also may contain information about the next layer up
- Examples:
 - TCP (flow control, reliability, congestion avoidance)
 - UDP (none of the above)
 - ICMP

Layer	Name
5	Applicatior
4	Transport
3	Internet
2	Link
1	Physical

Internet Model ICMP - Internet Control Message Protocol

- The IP stack is not as strict with layers as the OSI stack
- ICMP uses IP for transport
- But it does not have anything "above" it

Layer	Name
5	Applicatior
4	nansport
3	Linernet
2	Link
1	Physical

Internet Model **ICMP - Internet Control Message Protocol**

- The IP stack is not as strict with layers as the OSI stack
- ICMP uses IP for transport
- But it does not have anything "above" it
- So what it is needed for anyway?
 - To understand that, lets take a step back and ask about what "Reasons for Packets" are there?

Layer	Name
4	ICMP
3	Internet
2	Link
1	Physical

Reasons for Packets TCP and UDP

- Why are packets being sent?
 - Because a user clicks on something
 - Or a machine reacts to an event
- Some program on the application layer needs to send data

Reason for Packets

- This is different for ICMP
- ICMP usually is a reaction to a network event
- Like an error message
- Often sent by a router
 - To indicate an error in transmission for example

ICMP Example

ICMP Example Time Exceeded

- Remember the hop limit field in the header?
 - In IPv4 it is called "Time to live" b serves the same function
- When a packet is sent, Hop Limit is initialized to a value 1-255
- It is decreased by every router forwarding the packet

Once it hits zero, the packet is discarded

	Byte	0	1	2	3
IPv6	0	Versio	n = 6 / Traffic	Class / Flow	Label
	4	Payload in b	l Length ytes	Next Header	Ho64n
out	8				
	12		Source IPv6 Address		
	16				
	20				
	24		Destination IPv6 Address		
	28				
	32				
	36				

ICMP-Packet³

Byte	0	1	2	3
0	Version = 6 / Traffic Class / Flow Label			
4	Payload Length Next Header Hop Limit			Hop Limit
8 12 16 20	Source IPv6 Address			
24 28 32 36	Destination IPv6 Address Time			
40	Exceeded	Code =U		KSUM
	IP header + first 8 bytes of discarded packet			
	X			

ICMP Time Exceeded Sent by router discarding packet

- When the TTL / HopCount hits zero
 - The router discards the packet
 - The router sends an ICMP packet of type *Time Exceeded* back to the originator of the discarded packet
 - This ICMP *Time Exceeded* contains enough information for the originator to determine which packet was discarded

t of t ins ator

ICMP Types

ICMP Types Destination unreachable

- Ever got a "destination unreachable" error?
- This is also an ICMP message
- ICMP Type = 1
- Code gives reason
 - no route
 - administratively prohibited
 - address unreachable
 - port unreachable

... more

ICMP Types Echo request / echo reply

- Do you know "ping"?
- This is one of the few useroriginated ICMPs
- Ping sends an "echo request" ICMP packet
- And expects an "echo reply" packet back

 Here we have some difference in IPv4 and IPv6

ICMP Types Differences in IPv4 and IPv6

- In IPv4, "type" values were assigned as they were defined
 - with some of them kept unassigned for future use
 - starting with "0" for echo reply, ending with "43" for extended echo reply
- In IPv6, there is some structure to "type" numbers
 - error messages are 0-127
 - informational messages are 128-255

ICMP Type	IPv4	IF
Echo Request	8	1
Echo Reply	0	1
Destination unreachable	3	
Time exceeded	11	

Conclusion

Conclusion ICMP - Internet Control Message Protocol

- ICMP plays an important role for signalling in the Internet
- Devices send ICMP messages to indicate error states or for informational purposes
- ICMP messages are often not user-initiated but triggered by packet forwarding or delivery events
- ICMP exists both in IPv4 and IPv6, but the values for its fields differ.

Layer	Na
4	IC
3	Inte
2	Li
1	Phy

<u>academy@de-cix.net</u>

Links and further reading

Links and further reading

- Internet protocol <u>https://en.wikipedia.org/wiki/Internet_Protocol</u>
- Protocol stack <u>https://en.wikipedia.org/wiki/Protocol_stack</u>
 - Transport Layer: <u>https://en.wikipedia.org/wiki/Transport_layer</u>
 - Datagram: <u>https://en.wikipedia.org/wiki/Datagram</u>
- IP Network Model: <u>https://en.wikipedia.org/wiki/Internet_protocol_suite</u>
- IPv4
 - IPv4 <u>https://en.wikipedia.org/wiki/IPv4</u>
- IPv6
 - IPv6 itself <u>https://en.wikipedia.org/wiki/IPv6</u>
 - IPv6 header <u>https://en.wikipedia.org/wiki/IPv6_packet</u>
- History of Internet and IP
 - Internet Hall of Fame <u>https://internethalloffame.org</u>
 - Defense Advanced Research Projects Agency (DARPA) https://www.darpa.mil
 - ARPANET <u>https://www.darpa.mil/about-us/timeline/arpanet</u>
 - The "Protocol Wars" <u>https://en.wikipedia.org/wiki/Protocol Wars</u>

Links and further reading

- ICMPv4:
 - Wikipedia: <u>https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol</u>
 - Definition in <u>RFC792</u>
 - Depreciation of some ICMP types: <u>RFC6918</u>
- ICMPv6:
 - Wikipedia: <u>https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol_for_IPv6</u>
 - Definition in <u>RFC4443</u> (first definition (now obsolete) was in <u>RFC1885</u>)
 - parameters.xhtml

• IANA list of ICMP types and codes: <u>http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml</u>

IANA list of ICMPv6 types and codes: <u>https://www.iana.org/assignments/icmpv6-parameters/icmpv6-</u>

Internet RFCs (Standards)

- There are too many RFCs dealing with IPv4 and IPv6 to be listed here
- Just go to <u>https://tools.ietf.org/html/</u> and use the search field
- How does something become RFC? <u>https://www.rfc-editor.org/pubprocess/</u>
- The <u>IETF</u> Internet Engineering Task Force

